ﻻ يوجد ملخص باللغة العربية
This paper explores the possibility of using Maxwell algebra and its generalizations called resonant algebras for the unified description of topological insulators. We offer the natural action construction, which includes the relativistic Wen-Zee and other terms, with adjustable coupling constants. By gauging all available resonant algebras formed by Lorentz, translational and Maxwell generators ${J_a, P_a, Z_a}$ we present six Chern-Simons Lagrangians with various terms content accounting for different aspects of the topological insulators. Additionally, we provide complementary actions for another invariant metric form, which might turn out useful in some generalized (2+1) gravity models.
We study SU(N) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity
The contribution of nontrivial vacuum (topological) excitations, more specifically vortex configurations of the self-dual Chern-Simons-Higgs model, to the functional partition function is considered. By using a duality transformation, we arrive at a
We compute directly the entanglement entropy of spatial regions in Chern-Simons gauge theories in 2+1 dimensions using surgery. We use these results to determine the universal topological piece of the entanglement entropy for Abelian and non-Abelian quantum Hall fluids.
We study large $N$ 2+1 dimensional fermions in the fundamental representation of an $SU(N)_k$ Chern Simons gauge group in the presence of a uniform background magnetic field for the $U(1)$ global symmetry of this theory. The magnetic field modifies t
We present a brief review of the fuzzy disc, the finite algebra approximating functions on a disc, which we have introduced earlier. We also present a comparison with recent papers of Balachandran, Gupta and Kurkc{c}{u}ov{g}lu, and of Pinzul and Ster