ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of the triple contact line on a non-isothermal heater at partial wetting

126   0   0.0 ( 0 )
 نشر من قبل Vadim Nikolayev
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dynamics of the triple gas-liquid-solid contact line is analysed for the case where the gas is the saturated vapour corresponding to the liquid, like in the vapour bubble in boiling. It is shown that even small superheating (with respect to the saturation temperature) causes evaporation of the adsorption liquid film and the true triple contact is established. It is shown that the hydrodynamic contact line singularity cannot be relaxed with the Navier slip condition under such circumstances. Augmented with the second derivative slip condition is proposed to be applied. For the partial wetting conditions, a non-stationary contact line problem where the contact line motion is caused by evaporation or condensation is treated in the lubrication approximation in the vicinity of the contact line. High heat fluxes in this region require the transient heat conduction inside the heater to be accounted for. Two 2D problems, those of drop retraction with no phase change and of drop evaporation are solved and analysed as illustrations of the proposed approach.



قيم البحث

اقرأ أيضاً

The relaxation dynamics of the contact angle between a viscous liquid and a smooth substrate is studied at the nanoscale. Through atomic force microscopy measurements of polystyrene nanostripes we monitor simultaneously the temporal evolution of the liquid-air interface as well as the position of the contact line. The initial configuration exhibits high curvature gradients and a non-equilibrium contact angle that drive liquid flow. Both these conditions are relaxed to achieve the final state, leading to three successive regimes along time: i) stationary-contact-line levelling; ii) receding-contact-line dewetting; iii) collapse of the two fronts. For the first regime, we reveal the existence of a self-similar evolution of the liquid interface, which is in excellent agreement with numerical calculations from a lubrication model. For different liquid viscosities and film thicknesses we provide evidence for a transition to dewetting featuring a universal critical contact angle and dimensionless time.
We extend the Cahn-Landau-de Gennes mean field theory of binary mixtures to understand the wetting thermodynamics of a three phase system, that is in contact with an external surface which prefers one of the phases. We model the system using a phenom enological free energy having three minima corresponding to low, intermediate and high density phases. By systematically varying the textit{(i)} depth of the central minimum, textit{(ii)} the surface interaction parameters, we explore the phase behavior, and wetting characteristics of the system across the triple point corresponding to three phase coexistence. We observe a non-monotonic dependence of the surface tension across the triple point that is associated with a complete to partial wetting transition. The methodology is then applied to study the wetting behaviour of a polymer-liquid crystal mixture in contact with a surface using a renormalised free energy. Our work provides a way to interrogate phase behavior and wetting transitions of biopolymers in cellular environments.
We discuss an evaporation-induced wetting transition on superhydrophobic stripes, and show that depending on the elastic energy of the deformed contact line, which determines the value of an instantaneous effective contact angle, two different scenar ios occur. For relatively dilute stripes the receding angle is above 90$^circ$, and the sudden impalement transition happens due to an increase of a curvature of an evaporating drop. For dense stripes the slow impregnation transition commences when the effective angle reaches 90$^circ$ and represents the impregnation of the grooves from the triple contact line towards the drop center.
The effects of contact-line pinning are well-known in macroscopic systems, but are only just beginning to be explored at the microscale in colloidal suspensions. We use digital holography to capture the fast three-dimensional dynamics of micrometer-s ized ellipsoids breaching an oil-water interface. We find that the particle angle varies approximately linearly with the height, in contrast to results from simulations based on minimization of the interfacial energy. Using a simple model of the motion of the contact line, we show that the observed coupling between translational and rotational degrees of freedom is likely due to contact-line pinning. We conclude that the dynamics of colloidal particles adsorbing to a liquid interface are not determined by minimization of interfacial energy and viscous dissipation alone; contact-line pinning dictates both the timescale and pathway to equilibrium.
149 - Chen Zhao , Tian Yu , Jiajia Zhou 2021
We analyze the dynamics of liquid filling in a thin, slightly inflated rectangular channel driven by capillary forces. We show that although the amount of liquid $m$ in the channel increases in time following the classical Lucas-Washburn law, $m prop to t^{1/2}$, the prefactor is very sensitive to the deformation of the channel because the filling takes place by the growth of two parts, the bulk part (where the cross-section is completely filled by the liquid), and the finger part (where the cross-section is partially filled). We calculate the time dependence of $m$ accounting for the coupling between the two parts and show that the prefactor for the filling can be reduced significantly by a slight deformation of the rectangular channel, e.g., the prefactor is reduced 50% for a strain of 0.1%. This offers an explanation for the large deviation in the value of the prefactor reported previously.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا