ﻻ يوجد ملخص باللغة العربية
The effects of contact-line pinning are well-known in macroscopic systems, but are only just beginning to be explored at the microscale in colloidal suspensions. We use digital holography to capture the fast three-dimensional dynamics of micrometer-sized ellipsoids breaching an oil-water interface. We find that the particle angle varies approximately linearly with the height, in contrast to results from simulations based on minimization of the interfacial energy. Using a simple model of the motion of the contact line, we show that the observed coupling between translational and rotational degrees of freedom is likely due to contact-line pinning. We conclude that the dynamics of colloidal particles adsorbing to a liquid interface are not determined by minimization of interfacial energy and viscous dissipation alone; contact-line pinning dictates both the timescale and pathway to equilibrium.
We construct a mean-field formulation of the thermodynamics of ion solvation in immiscible polar binary mixtures. Assuming an equilibrium planar interface separating two semi-infinite regions of different constant dielectric medium, we study the elec
We report experiments that show rapid crystallization of colloids tethered to an oil-water interface in response to laser illumination. This light-induced transition is due to a combination of long-ranged thermophoretic pumping and local optical bind
The dynamics of active colloids is very sensitive to the presence of boundaries and interfaces which therefore can be used to control their motion. Here we analyze the dynamics of active colloids adsorbed at a fluid-fluid interface. By using a mesosc
The active motion of phoretic colloids leads them to accumulate at boundaries and interfaces. Such an excess accumulation, with respect to their passive counterparts, makes the dynamics of phoretic colloids particularly sensitive to the presence of b
By employing monomer-resolved computer simulations and analytical considerations based on polymer scaling theory, we analyze the conformations and interactions of multiarm star polymers strongly adsorbed on a smooth, two-dimensional plane. We find a