ترغب بنشر مسار تعليمي؟ اضغط هنا

Engineering Silicon Nanocrystals: Theoretical study of the effect of Codoping with Boron and Phosphorus

367   0   0.0 ( 0 )
 نشر من قبل Stefano Ossicini
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the optical and electronic properties of nanocrystalline silicon can be efficiently tuned using impurity doping. In particular, we give evidence, by means of ab-initio calculations, that by properly controlling the doping with either one or two atomic species, a significant modification of both the absorption and the emission of light can be achieved. We have considered impurities, either boron or phosphorous (doping) or both (codoping), located at different substitutional sites of silicon nanocrystals with size ranging from 1.1 nm to 1.8 nm in diameter. We have found that the codoped nanocrystals have the lowest impurity formation energies when the two impurities occupy nearest neighbor sites near the surface. In addition, such systems present band-edge states localized on the impurities giving rise to a red-shift of the absorption thresholds with respect to that of undoped nanocrystals. Our detailed theoretical analysis shows that the creation of an electron-hole pair due to light absorption determines a geometry distortion that in turn results in a Stokes shift between adsorption and emission spectra. In order to give a deeper insight in this effect, in one case we have calculated the absorption and emission spectra going beyond the single-particle approach showing the important role played by many-body effects. The entire set of results we have collected in this work give a strong indication that with the doping it is possible to tune the optical properties of silicon nanocrystals.



قيم البحث

اقرأ أيضاً

We study the effect of boron (B) and Phosphorous (P) co-doping on electronic and optical properties of graphitic carbon nitride (g-C$_3$N$_4$ or GCN) monolayer using density functional simulations. The energy band structure indicates that the incorpo ration of B and P into a hexagonal lattice of GCN reduces the energy band gap from $3.1$ for pristine GCN to $1.9$ eV, thus extending light absorption toward the visible region. Moreover, on the basis of calculating absorption spectra and dielectric function, the co-doped system exhibits an improved absorption intensity in the visible region and more electronic transitions, which named $pi^*$ electronic transitions that occurred and were prohibited in the pristine GCN. These transitions can be attributed to charge redistribution upon doping, caused by distorted configurable B/P co-doped GCN confirmed by both electron density and Mulliken charge population. Therefore, B/P co-doped GCN is expected to be an auspicious candidate to be used as a promising photoelectrode in Photoelectrochemical water splitting reactions leading to efficient solar H$_2$ production.
Gallium displays physical properties which can make it a potential element to produce metallic nanowires and high-conducting interconnects in nanoelectronics. Using first-principles pseudopotential plane method we showed that Ga can form stable metal lic linear and zigzag monatomic chain structures. The interaction between individual Ga atom and single-wall carbon nanotube (SWNT) leads to a chemisorption bond involving charge transfer. Doping of SWNT with Ga atom gives rise to donor states. Owing to a significant interaction between individual Ga atom and SWNT, continuous Ga coverage of the tube can be achieved. Ga nanowires produced by the coating of carbon nanotube templates are found to be stable and high conducting.
Achieving good quality Ohmic contacts to van der Waals materials is a challenge, since at the interface between metal and van der Waals material, different conditions can occur, ranging from the presence of a large energy barrier between the two mate rials to the metallization of the layered material below the contacts. In black phosphorus (bP), a further challenge is its high reactivity to oxygen and moisture, since the presence of uncontrolled oxidation can substantially change the behavior of the contacts. In this study, we investigate the influence of the metal used for the contacts to bP against the variability between different flakes and different samples, using three of the most used metals as contacts: Chromium, Titanium, and Nickel. Using the transfer length method, from an analysis of ten devices, both at room temperature and at low temperature, Ni results to be the best metal for Ohmic contacts to bP, providing the lowest contact resistance and minimum scattering between different devices. Moreover, we investigate the gate dependence of the current-voltage characteristics of these devices. In the accumulation regime, we observe good linearity for all metals investigated.
By means of ab-initio calculations we investigate the optical properties of pure a-SiN$_x$ samples, with $x in [0.4, 1.8]$, and samples embedding silicon nanoclusters (NCs) of diameter $0.5 leq d leq 1.0$ nm. In the pure samples the optical absorptio n gap and the radiative recombination rate vary according to the concentration of Si-N bonds. In the presence of NCs the radiative rate of the samples is barely affected, indicating that the intense photoluminescence of experimental samples is mostly due to the matrix itself rather than to the NCs. Besides, we evidence an important role of Si-N-Si bonds at the NC/matrix interface in the observed photoluminescence trend.
The discovery of graphene and the related fascinating capabilities have triggered an unprecedented interest in inorganic two-dimensional (2D) materials. Despite the impressive impact in a variety of photonic applications, the absence of energy gap ha s hampered its broader applicability in many optoelectronic devices. The recent advance of novel 2D materials, such as transition-metal dichalcogenides or atomically thin elemental materials, (e.g. silicene, germanene and phosphorene) promises a revolutionary step-change. Here we devise the first room-temperature Terahertz (THz) frequency detector exploiting few-layer phosphorene, e.g., a 10 nm thick flake of exfoliated crystalline black phosphorus (BP), as active channel of a field-effect transistor (FET). By exploiting the direct band gap of BP to fully switch between insulating and conducting states and by engineering proper antennas for efficient light harvesting, we reach detection performance comparable with commercial detection technologies, providing the first technological demonstration of a phosphorus-based active THz device.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا