ﻻ يوجد ملخص باللغة العربية
By means of ab-initio calculations we investigate the optical properties of pure a-SiN$_x$ samples, with $x in [0.4, 1.8]$, and samples embedding silicon nanoclusters (NCs) of diameter $0.5 leq d leq 1.0$ nm. In the pure samples the optical absorption gap and the radiative recombination rate vary according to the concentration of Si-N bonds. In the presence of NCs the radiative rate of the samples is barely affected, indicating that the intense photoluminescence of experimental samples is mostly due to the matrix itself rather than to the NCs. Besides, we evidence an important role of Si-N-Si bonds at the NC/matrix interface in the observed photoluminescence trend.
We discuss the fine structure and spin dynamics of spin-3/2 centers associated with silicon vacancies in silicon carbide. The centers have optically addressable spin states which makes them highly promising for quantum technologies. The fine structur
Monolayers of transition-metal dichalcogenides such as WSe2 have become increasingly attractive due to their potential in electrical and optical applications. Because the properties of these 2D systems are known to be affected by their surroundings,
We present a theoretical study of the dynamics of H atoms adsorbed on graphene bilayers with Bernal stacking. First, through extensive density functional theory calculations, including van der Waals interactions, we obtain the activation barriers inv
We study by means of density-functional calculations the role of lateral surface reconstructions in determining the electrical properties of <100> silicon nanowires. The different lateral reconstructions are explored by relaxing all the nanowires wit
The possibility that the apparent room temperature ferromagnetism, often measured in Co-doped ZnO, is due to uncompensated spins at the surface of wurtzite CoO nanoclusters is investigated by means of a combination of density functional theory and Mo