ﻻ يوجد ملخص باللغة العربية
We consider the problem of forecasting the next (observable) state of an unknown ergodic dynamical system from a noisy observation of the present state. Our main result shows, for example, that support vector machines (SVMs) using Gaussian RBF kernels can learn the best forecaster from a sequence of noisy observations if (a) the unknown observational noise process is bounded and has a summable $alpha$-mixing rate and (b) the unknown ergodic dynamical system is defined by a Lipschitz continuous function on some compact subset of $mathbb{R}^d$ and has a summable decay of correlations for Lipschitz continuous functions. In order to prove this result we first establish a general consistency result for SVMs and all stochastic processes that satisfy a mixing notion that is substantially weaker than $alpha$-mixing.
Support vector machine (SVM) is one of the most popular classification algorithms in the machine learning literature. We demonstrate that SVM can be used to balance covariates and estimate average causal effects under the unconfoundedness assumption.
We consider the modeling of data generated by a latent continuous-time Markov jump process with a state space of finite but unknown dimensions. Typically in such models, the number of states has to be pre-specified, and Bayesian inference for a fixed
We consider ill-posed inverse problems where the forward operator $T$ is unknown, and instead we have access to training data consisting of functions $f_i$ and their noisy images $Tf_i$. This is a practically relevant and challenging problem which cu
The problem of estimating a sparse signal from low dimensional noisy observations arises in many applications, including super resolution, signal deconvolution, and radar imaging. In this paper, we consider a sparse signal model with non-stationary m
We discuss model selection to determine whether the variance-covariance matrix of a multivariate Gaussian model with known mean should be considered to be a constant diagonal, a non-constant diagonal, or an arbitrary positive definite matrix. Of part