ﻻ يوجد ملخص باللغة العربية
We propose a spatially and temporally nonlocal exchange-correlation (xc) kernel for the spin-unpolarized fluid phase of ground-state jellium, for use in time-dependent density functional and linear response calculations. The kernel is constructed to satisfy known properties of the exact xc kernel, to accurately describe the correlation energies of bulk jellium, and to satisfy frequency-moment sum rules at a wide range of bulk jellium densities. All exact constraints satisfied by the recent MCP07 kernel [A. Ruzsinszky, et al., Phys. Rev. B 101, 245135 (2020)] are maintained in the new tightly-constrained 2021 (TC21) kernel, while others are added.
In the framework of time-dependent density functional theory (TDDFT), the exact exchange-correlation (xc) kernel $f_{xc}(n,q,omega)$ determines the ground-state energy, excited-state energies, lifetimes, and the time-dependent linear density response
The position-dependent exact-exchange energy per particle $varepsilon_x(z)$ (defined as the interaction between a given electron at $z$ and its exact-exchange hole) at metal surfaces is investigated, by using either jellium slabs or the semi-infinite
Measuring the transport of electrons through a graphene sheet necessarily involves contacting it with metal electrodes. We study the adsorption of graphene on metal substrates using first-principles calculations at the level of density functional the
The dynamical exchange-correlation kernel $f_{xc}$ of a non-uniform electron gas is an essential input for the time-dependent density functional theory of electronic systems. The long-wavelength behavior of this kernel is known to be of the form $f_{
We compute the thermal conductivity of water within linear response theory from equilibrium molecular dynamics simulations, by adopting two different approaches. In one, the potential energy surface (PES) is derived on the fly from the electronic gro