ترغب بنشر مسار تعليمي؟ اضغط هنا

Surface effects on the orbital order in the single layered manganite La0.5Sr1.5MnO4

142   0   0.0 ( 0 )
 نشر من قبل Yusuke Wakabayashi
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the first observation of `orbital truncation rods -- the scattering arising from the termination of bulk orbital order at the surface of a crystal. The x-ray measurements, performed on a cleaved, single-layered perovskite, La0.5Sr1.5MnO4, reveal that while the crystallographic surface is atomically smooth, the orbital `surface is much rougher, with an r.m.s. deviation from the average `surface of ~0.7nm. The temperature dependence of this scattering shows evidence of a surface-induced second order transition.



قيم البحث

اقرأ أيضاً

Density waves are inherent to the phase diagrams of materials that exhibit unusual, and sometimes extraordinarily useful properties, such as superconductivity and colossal magnetoresistance. While the pure charge density waves (CDW) are well describe d by an itinerant approach, where electrons are treated as waves propagating through the crystal, the charge-orbital ordering (COO) is usually explained by a local approach, where the electrons are treated as localized on the atomic sites. Here we show that in the half-doped manganite La0.5Sr1.5MnO4 (LSMO) the electronic susceptibility, calculated from the angle-resolved photoemission spectra (ARPES), exhibits a prominent nesting-driven peak at one quarter of the Brillouin zone diagonal, that is equal to the reciprocal lattice vector of the charge-orbital pattern. Our results demonstrate that the Fermi surface geometry determines the propensity of the system to form a COO state which, in turn, implies the applicability of the itinerant approach also to the COO.
97 - L. Shen , S. Mack , G. Dakovski 2019
In the mixed-valence manganites, a near-infrared laser typically melts the orbital and spin order simultaneously, corresponding to the photoinduced $d^{1}d^{0}$ $xrightarrow{}$ $d^{0}d^{1}$ excitations in the Mott-Hubbard bands of manganese. Here, we use ultrafast methods -- both femtosecond resonant x-ray diffraction and optical reflectivity -- to demonstrate that the orbital response in the layered manganite Nd$_{1-x}$Sr$_{1+x}$MnO$_{4}$ ($it{x}$ = 2/3) does not follow this scheme. At the photoexcitation saturation fluence, the orbital order is only diminished by a few percent in the transient state. Instead of the typical $d^{1}d^{0}$ $xrightarrow{}$ $d^{0}d^{1}$ transition, a near-infrared pump in this compound promotes a fundamentally distinct mechanism of charge transfer, the $d^{0}$ $ xrightarrow{}$ $d^{1}L$, where $it{L}$ denotes a hole in the oxygen band. This novel finding may pave a new avenue for selectively manipulating specific types of order in complex materials of this class.
In-plane anisotropic ground states are ubiquitous in correlated solids such as pnictides, cuprates and manganites. They can arise from doping Mott insulators and compete with phases such as superconductivity, however their origins are debated. Strong coupling between lattice, charge, orbital and spin degrees of freedom results in simultaneous ordering of multiple parameters, masking the mechanism that drives the transition. We demonstrate that the anisotropic orbital domains in a manganite can be oriented by the polarization of a pulsed THz light field. Through the application of the Hubbard model, we show that domain control can be achieved either through field assisted hopping of charges or a field-induced modification of bond angles. Both routes enhance the local Coulomb repulsions which drive domain reorientation and the dominant mechanism is dictated by the equilibrium Mn-O-Mn bond angle. Our results highlight the key role played by the Coulomb interaction in driving orbital order in manganites and demonstrate how THz can be utilized in new ways to understand and manipulate anisotropic phases in a broad range of correlated materials.
Using first principle band structure calculations, we critically examine results of resonant x-ray scattering experiments which is believed to directly probe charge and orbital ordering. Considering the specific case of La0.5Sr1.5MnO4, we show that t his technique actually probes most directly and sensitively small structural distortions in the system. Such distortions, often difficult to detect with more conventional techniques, invariably accompany and usually cause the orbital and charge orderings. In this sense, this technique is only an indirect probe of such types of ordering. Our results also provide a microscopic explanation of the novel types of charge and orbital ordering realized in this system and other doped manganites.
The semiconductor-insulator phase transition of the single-layer manganite La0.5Sr1.5MnO4 has been studied by means of high resolution synchrotron x-ray powder diffraction and resonant x-ray scattering at the Mn K edge. We conclude that a concomitant structural transition from tetragonal I4/mmm to orthorhombic Cmcm phases drives this electronic transition. A detailed symmetry-mode analysis reveals that condensation of three soft modes -Delta_2(B2u), X1+(B2u) and X1+(A)- acting on the oxygen atoms accounts for the structural transformation. The Delta_2 mode leads to a pseudo Jahn-Teller distortion (in the orthorhombic bc-plane only) on one Mn site (Mn1) whereas the two X1+ modes produce an overall contraction of the other Mn site (Mn2) and expansion of the Mn1 one. The X1+ modes are responsible for the tetragonal superlattice (1/2,1/2,0)-type reflections in agreement with a checkerboard ordering of two different Mn sites. A strong enhancement of the scattered intensity has been observed for these superlattice reflections close to the Mn K edge, which could be ascribed to some degree of charge disproportion between the two Mn sites of about 0.15 electrons. We also found that the local geometrical anisotropy of the Mn1 atoms and its ordering originated by the condensed Delta_2 mode alone perfectly explains the resonant scattering of forbidden (1/4,1/4,0)-type reflections without invoking any orbital ordering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا