ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural changes at the semiconductor-insulator phase transition in the single layered La0.5Sr1.5MnO4 perovskite

138   0   0.0 ( 0 )
 نشر من قبل Javier Herrero-Martin
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The semiconductor-insulator phase transition of the single-layer manganite La0.5Sr1.5MnO4 has been studied by means of high resolution synchrotron x-ray powder diffraction and resonant x-ray scattering at the Mn K edge. We conclude that a concomitant structural transition from tetragonal I4/mmm to orthorhombic Cmcm phases drives this electronic transition. A detailed symmetry-mode analysis reveals that condensation of three soft modes -Delta_2(B2u), X1+(B2u) and X1+(A)- acting on the oxygen atoms accounts for the structural transformation. The Delta_2 mode leads to a pseudo Jahn-Teller distortion (in the orthorhombic bc-plane only) on one Mn site (Mn1) whereas the two X1+ modes produce an overall contraction of the other Mn site (Mn2) and expansion of the Mn1 one. The X1+ modes are responsible for the tetragonal superlattice (1/2,1/2,0)-type reflections in agreement with a checkerboard ordering of two different Mn sites. A strong enhancement of the scattered intensity has been observed for these superlattice reflections close to the Mn K edge, which could be ascribed to some degree of charge disproportion between the two Mn sites of about 0.15 electrons. We also found that the local geometrical anisotropy of the Mn1 atoms and its ordering originated by the condensed Delta_2 mode alone perfectly explains the resonant scattering of forbidden (1/4,1/4,0)-type reflections without invoking any orbital ordering.



قيم البحث

اقرأ أيضاً

We report the first observation of `orbital truncation rods -- the scattering arising from the termination of bulk orbital order at the surface of a crystal. The x-ray measurements, performed on a cleaved, single-layered perovskite, La0.5Sr1.5MnO4, r eveal that while the crystallographic surface is atomically smooth, the orbital `surface is much rougher, with an r.m.s. deviation from the average `surface of ~0.7nm. The temperature dependence of this scattering shows evidence of a surface-induced second order transition.
We present a study of the effect of very high pressure on the orthorhombic perovskite GdMnO3 by Raman spectroscopy and synchrotron x-ray diffraction up to 53.2 GPa. The experimental results yield a structural and insulator-to-metal phase transition c lose to 50 GPa, from an orthorhombic to a metrically cubic structure. The phase transition is of first order with a pressure hysteresis of about 6 GPa. The observed behavior under very high pressure might well be a general feature in rare-earth manganites.
Synchrotron X-ray total scattering studies of structural changes in rutile VO2 at the metal-insulator transition temperature of 340 K reveal that monoclinic and tetragonal phases of VO2 coexist in equilibrium, as expected for a first-order phase tran sition. No evidence for any distinct intermediate phase is seen. Unbiased local structure studies of the changes in V--V distances through the phase transition, using reverse Monte Carlo methods, support the idea of phase coexistence and point to the high degree of correlation in the dimerized low-temperature structure. No evidence for short range V--V correlations that would be suggestive of local dimers is found in the metallic phase.
An abrupt first-order metal-insulator transition (MIT) without structural phase transition is first observed by current-voltage measurements and micro-Raman scattering experiments, when a DC electric field is applied to a Mott insulator VO_2 based tw o-terminal device. An abrupt current jump is measured at a critical electric field. The Raman-shift frequency and the bandwidth of the most predominant Raman-active A_g mode, excited by the electric field, do not change through the abrupt MIT, while, they, excited by temperature, pronouncedly soften and damp (structural MIT), respectively. This structural MIT is found to occur secondarily.
We discuss Mott insulating and metallic phases of a model with $e_g$ orbital degeneracy to understand physics of Mn perovskite compounds. Quantum Monte Carlo and Lanczos diagonalization results are discussed in this model. To reproduce experimental r esults on charge gap and Jahn-Teller distortions, we show that a synergy between the strong correlation effects and the Jahn-Teller coupling is important. The incoherent charge dynamics and strong charge fluctuations are characteristic of the metallic phase accompanied with critical enhancement of short-ranged orbital correlation near the insulator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا