ﻻ يوجد ملخص باللغة العربية
Density waves are inherent to the phase diagrams of materials that exhibit unusual, and sometimes extraordinarily useful properties, such as superconductivity and colossal magnetoresistance. While the pure charge density waves (CDW) are well described by an itinerant approach, where electrons are treated as waves propagating through the crystal, the charge-orbital ordering (COO) is usually explained by a local approach, where the electrons are treated as localized on the atomic sites. Here we show that in the half-doped manganite La0.5Sr1.5MnO4 (LSMO) the electronic susceptibility, calculated from the angle-resolved photoemission spectra (ARPES), exhibits a prominent nesting-driven peak at one quarter of the Brillouin zone diagonal, that is equal to the reciprocal lattice vector of the charge-orbital pattern. Our results demonstrate that the Fermi surface geometry determines the propensity of the system to form a COO state which, in turn, implies the applicability of the itinerant approach also to the COO.
We report on the in-plane anisotropy of the electronic response in the spin/charge/orbital ordered phase of a half-doped layered-structure manganite. The optical conductivity spectra for a single domain of Eu$_{1/2}$% Ca$_{3/2}$MnO$_{4}$ unambiguousl
We report the first observation of `orbital truncation rods -- the scattering arising from the termination of bulk orbital order at the surface of a crystal. The x-ray measurements, performed on a cleaved, single-layered perovskite, La0.5Sr1.5MnO4, r
We have utilized neutron powder diffraction to probe the crystal structure of layered Na$_{x}$CoO$_{2}$ near the half doping composition of $x=$0.46 over the temperature range of 2 to 600K. Our measurements show evidence of a dynamic transition in th
The coupling of multiple degrees of freedom - charge, spin, and lattice - in manganites has mostly been considered at the microscopic level. However, on larger length scales, these correlations may be affected by strain and disorder, which can lead t
The self-organization of strongly interacting electrons into superlattice structures underlies the properties of many quantum materials. How these electrons arrange within the superlattice dictates what symmetries are broken and what ground states ar