ترغب بنشر مسار تعليمي؟ اضغط هنا

Valley Dependent Optoelectronics from Inversion Symmetry Breaking

213   0   0.0 ( 0 )
 نشر من قبل Wang Yao
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Inversion symmetry breaking allows contrasted circular dichroism in different k-space regions, which takes the extreme form of optical selection rules for interband transitions at high symmetry points. In materials where band-edges occur at noncentral valleys, this enables valley dependent interplay of electrons with light of different circular polarizations, in analogy to spin dependent optical activities in semiconductors. This discovery is in perfect harmony with the previous finding of valley contrasted Bloch band features of orbital magnetic moment and Berry curvatures from inversion symmetry breaking [Phys. Rev. Lett. 99, 236809 (2007)]. A universal connection is revealed between the k-resolved optical oscillator strength of interband transitions, the orbital magnetic moment and the Berry curvatures, which also provides a principle for optical measurement of orbital magnetization and intrinsic anomalous Hall conductivity in ferromagnetic systems. The general physics is demonstrated in graphene where inversion symmetry breaking leads to valley contrasted optical selection rule for interband transitions. We discuss graphene based valley optoelectronics applications where light polarization information can be interconverted with electronic information.



قيم البحث

اقرأ أيضاً

We demonstrate pronounced electric-field-induced second-harmonic generation in naturally inversion symmetric 2H stacked bilayer MoS$_{2}$ embedded into microcapacitor devices. By applying strong external electric field perturbations ($|F| = pm 2.6 MV cm^{-1}$) perpendicular to the basal plane of the crystal we control the inversion symmetry breaking and, hereby, tune the nonlinear conversion efficiency. Strong tunability of the nonlinear response is observed throughout the energy range ($E_{omega} sim 1.25 eV - 1.47 eV$) probed by measuring the second-harmonic response at $E_{2omega}$, spectrally detuned from both the A- and B-exciton resonances. A 60-fold enhancement of the second-order nonlinear signal is obtained for emission at $E_{2omega} = 2.49 eV$, energetically detuned by $Delta E = E_{2omega} - E_C = -0.26 eV$ from the C-resonance ($E_{C} = 2.75 eV$). The pronounced spectral dependence of the electric-field-induced second-harmonic generation signal reflects the bandstructure and wave function admixture and exhibits particularly strong tunability below the C-resonance, in good agreement with Density Functional Theory calculations. Moreover, we show that the field-induced second-harmonic generation relies on the interlayer coupling in the bilayer. Our findings strongly suggest that the strong tunability of the electric-field-induced second-harmonic generation signal in bilayer transition metal dichalcogenides may find applications in miniaturized electrically switchable nonlinear devices.
TbMnO3 is an orthorhombic insulator where incommensurate spin order for temperature T_N < 41K is accompanied by ferroelectric order for T < 28K. To understand this, we establish the magnetic structure above and below the ferroelectric transition usin g neutron diffraction. In the paraelectric phase, the spin structure is incommensurate and longitudinally-modulated. In the ferroelectric phase, however, there is a transverse incommensurate spiral. We show that the spiral breaks spatial inversion symmetry and can account for magnetoelectricity in TbMnO3.
The friction between the walls of multi-wall carbon nanotubes is shown to be extremely low in general, with important details related to the specific choice of the walls. This is governed by a simple expression revealing that the phenomenon is a prof ound consequence of the specific symmetry breaking: super-slippery sliding of the incommensurate walls is a Goldstone mode. Three universal principles of tribology, offering a recipe for the lubricant selection are emphasized.
The use of relative twist angle between adjacent atomic layers in a van der Waals heterostructure, has emerged as a new degree of freedom to tune electronic and optoelectronic properties of devices based on 2D materials. Using ABA-stacked trilayer (T LG) graphene as the model system, we show that, contrary to conventional wisdom, the band structures of 2D materials are systematically tunable depending on their relative alignment angle between hexagonal BN (hBN), even at very large twist angles. Moreover, addition or removal of the hBN substrate results in an inversion of the K and K valley in TLGs lowest Landau level (LL). Our work illustrates the critical role played by substrates in van der Waals heterostructures and opens the door towards band structure modification and valley control via substrate and twist angle engineering.
Manipulation of spin and valley degrees of freedom is a key step towards realizing novel quantum technologies, for which atomically thin transition metal dichalcogenides (TMDCs) have been established as promising candidates. In monolayer TMDCs, the l ack of inversion symmetry gives rise to a spin-valley correlation of the band structure allowing for valley-selective electronic excitation with circularly polarized light. Here we show that, even in centrosymmetric samples of 2H-WSe2, circularly polarized light can generate spin-, valley- and layer-polarized excited states in the conduction band. Employing time- and angle-resolved photoemission spectroscopy (trARPES) with spin-selective excitation, the dynamics of valley and layer pseudospins of the excited carriers are investigated. Complementary time-dependent density functional theory (TDDFT) calculations of the excited state populations reveal a strong circular dichroism of the spin-, valley- and layer-polarizations and a pronounced 2D character of the excited states in the K valleys. We observe scattering of carriers towards the global minimum of the conduction band on a sub-100 femtosecond timescale to states with three-dimensional character facilitating inter-layer charge transfer. Our results establish the optical control of coupled spin-, valley- and layer-polarized states in centrosymmetric materials and suggest the suitability of TMDC multilayer materials for valleytronic and spintronic device concepts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا