ﻻ يوجد ملخص باللغة العربية
TbMnO3 is an orthorhombic insulator where incommensurate spin order for temperature T_N < 41K is accompanied by ferroelectric order for T < 28K. To understand this, we establish the magnetic structure above and below the ferroelectric transition using neutron diffraction. In the paraelectric phase, the spin structure is incommensurate and longitudinally-modulated. In the ferroelectric phase, however, there is a transverse incommensurate spiral. We show that the spiral breaks spatial inversion symmetry and can account for magnetoelectricity in TbMnO3.
In the triangular layered magnet PdCrO2 the intralayer magnetic interactions are strong, however the lattice structure frustrates interlayer interactions. In spite of this, long-range, 120$^circ$ antiferromagnetic order condenses at $T_N = 38$~K. We
Engineering and enhancing inversion symmetry breaking in solids is a major goal in condensed matter physics and materials science, as a route to advancing new physics and applications ranging from improved ferroelectrics for memory devices to materia
Inversion symmetry breaking allows contrasted circular dichroism in different k-space regions, which takes the extreme form of optical selection rules for interband transitions at high symmetry points. In materials where band-edges occur at noncentra
In order to clarify the mechanism associated with pressure/magnetic-field-induced giant ferroelectric polarization in TbMnO3, this work investigated changes in magnetic ordering brought about by variations in temperature, magnetic field, and pressure
This work shows an unconventional route for spin-driven ferroelectricity originating from a metastable magnetic field-induced canting of chromium sublattice in the presence of gadolinium moments in GdCrTiO5 at low temperatures. Compared to the isostr