ﻻ يوجد ملخص باللغة العربية
We prove an area law for the entanglement entropy in gapped one dimensional quantum systems. The bound on the entropy grows surprisingly rapidly with the correlation length; we discuss this in terms of properties of quantum expanders and present a conjecture on completely positive maps which may provide an alternate way of arriving at an area law. We also show that, for gapped, local systems, the bound on Von Neumann entropy implies a bound on R{e}nyi entropy for sufficiently large $alpha<1$ and implies the ability to approximate the ground state by a matrix product state.
We prove that the entanglement entropy of the ground state of a locally gapped frustration-free 2D lattice spin system satisfies an area law with respect to a vertical bipartition of the lattice into left and right regions. We first establish that th
This monograph introduces the reader to basic notions of integrable techniques for one-dimensional quantum systems. In a pedagogical way, a few examples of exactly solvable models are worked out to go from the coordinate approach to the Algebraic Bet
We study quench dynamics and equilibration in one-dimensional quantum hydrodynamics, which provides effective descriptions of the density and velocity fields in gapless quantum gases. We show that the information content of the large time steady stat
We outline a theory of symmetry protected topological phases of one-dimensional quantum walks. We assume spectral gaps around the symmetry-distinguished points +1 and -1, in which only discrete eigenvalues are allowed. The phase classification by int
The projected entangled pair state (PEPS) representation of quantum states on two-dimensional lattices induces an entanglement based hierarchy in state space. We show that the lowest levels of this hierarchy exhibit an enormously rich structure inclu