ترغب بنشر مسار تعليمي؟ اضغط هنا

Equilibration in one-dimensional quantum hydrodynamic systems

150   0   0.0 ( 0 )
 نشر من قبل Spyros Sotiriadis
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Spyros Sotiriadis




اسأل ChatGPT حول البحث

We study quench dynamics and equilibration in one-dimensional quantum hydrodynamics, which provides effective descriptions of the density and velocity fields in gapless quantum gases. We show that the information content of the large time steady state is inherently connected to the presence of ballistically moving localised excitations. When such excitations are present, the system retains memory of initial correlations up to infinite times, thus evading decoherence. We demonstrate this connection in the context of the Luttinger model, the simplest quantum hydrodynamic model, and in the quantum KdV equation. In the standard Luttinger model, memory of all initial correlations is preserved throughout the time evolution up to infinitely large times, as a result of the purely ballistic dynamics. However nonlinear dispersion or interactions, when separately present, lead to spreading and delocalisation that suppress the above effect by eliminating the memory of non-Gaussian correlations. We show that, for any initial state that satisfies sufficient clustering of correlations, the steady state is Gaussian in terms of the bosonised or fermionised fields in the dispersive or interacting case respectively. On the other hand, when dispersion and interaction are simultaneously present, a semiclassical approximation suggests that localisation is restored as the two effects compensate each other and solitary waves are formed. Solitary waves, or simply solitons, are experimentally observed in quantum gases and theoretically predicted based on semiclassical approaches, but the question of their stability at the quantum level remains to a large extent an open problem. We give a general overview on the subject and discuss the relevance of our findings to general out of equilibrium problems.



قيم البحث

اقرأ أيضاً

We present a semiclassical treatment of one-dimensional many-body quantum systems in equilibrium, where quantum corrections to the classical field approximation are systematically included by a renormalization of the classical field parameters. Our s emiclassical approximation is reliable in the limit of weak interactions and high temperatures. As a specific example, we apply our method to the interacting Bose gas and study experimentally observable quantities, such as correlation functions of bosonic fields and the full counting statistics of the number of particles in an interval. Where possible, our method is checked against exact results derived from integrability, showing excellent agreement.
We study the dynamics of the statistics of the energy transferred across a point along a quantum chain which is prepared in the inhomogeneous initial state obtained by joining two identical semi-infinite parts thermalized at two different temperature s. In particular, we consider the transverse field Ising and harmonic chains as prototypical models of non-interacting fermionic and bosonic excitations, respectively. Within the so-called hydrodynamic limit of large space-time scales we first discuss the mean values of the energy density and current, and then, aiming at the statistics of fluctuations, we calculate exactly the scaled cumulant generating function of the transferred energy. From the latter, the evolution of the associated large deviation function is obtained. A natural interpretation of our results is provided in terms of a semi-classical picture of quasi-particles moving ballistically along classical trajectories. Similarities and differences between the transferred energy scaled cumulant and the large deviation functions in the cases of non-interacting fermions and bosons are discussed.
The quantum O(N) model in the infinite $N$ limit is a paradigm for symmetry-breaking. Qualitatively, its phase diagram is an excellent guide to the equilibrium physics for more realistic values of $N$ in varying spatial dimensions ($d>1$). Here we in vestigate the physics of this model out of equilibrium, specifically its response to global quenches starting in the disordered phase. If the model were to exhibit equilibration, the late time state could be inferred from the finite temperature phase diagram. In the infinite $N$ limit, we show that not only does the model not lead to equilibration on account of an infinite number of conserved quantities, it also does emph{not} relax to a generalized Gibbs ensemble consistent with these conserved quantities. Nevertheless, we emph{still} find that the late time states following quenches bear strong signatures of the equilibrium phase diagram. Notably, we find that the model exhibits coarsening to a non-equilibrium critical state only in dimensions $d>2$, that is, if the equilibrium phase diagram contains an ordered phase at non-zero temperatures.
97 - Spyros Sotiriadis 2015
One of the fundamental principles of statistical physics is that only partial information about a systems state is required for its macroscopic description. This is not only true for thermal ensembles, but also for the unconventional ensemble, known as Generalized Gibbs Ensemble (GGE), that is expected to describe the relaxation of integrable systems after a quantum quench. By analytically studying the quench dynamics in a prototypical one-dimensional critical model, the massless free bosonic field theory, we find evidence of a novel type of equilibration characterized by the preservation of an enormous amount of memory of the initial state that is accessible by local measurements. In particular, we show that the equilibration retains memory of non-Gaussian initial correlations, in contrast to the case of massive free evolution which erases all such memory. The GGE in its standard form, being a Gaussian ensemble, fails to predict correctly the equilibrium values of local observables, unless the initial state is Gaussian itself. Our findings show that the equilibration of a broad class of quenches whose evolution is described by Luttinger liquid theory with an initial state that is non-Gaussian in terms of the bosonic field, is not correctly captured by the corresponding bosonic GGE, raising doubts about the validity of the latter in general one-dimensional gapless integrable systems such as the Lieb-Liniger model. We also propose that the same experiment by which the GGE was recently observed [Langen et al., Science 348 (2015) 207-211] can also be used to observe its failure, simply by starting from a non-Gaussian initial state.
By exploring a phase space hydrodynamics description of one-dimensional free Fermi gas, we discuss how systems settle down to steady states described by the generalized Gibbs ensembles through quantum quenches. We investigate time evolutions of the F ermions which are trapped in external potentials or a circle for a variety of initial conditions and quench protocols. We analytically compute local observables such as particle density and show that they always exhibit power law relaxation at late times. We find a simple rule which determines the power law exponent. Our findings are, in principle, observable in experiments in an one dimensional free Fermi gas or Tonks gas (Bose gas with infinite repulsion).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا