ترغب بنشر مسار تعليمي؟ اضغط هنا

An area law for 2D frustration-free spin systems

112   0   0.0 ( 0 )
 نشر من قبل Anurag Anshu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that the entanglement entropy of the ground state of a locally gapped frustration-free 2D lattice spin system satisfies an area law with respect to a vertical bipartition of the lattice into left and right regions. We first establish that the ground state projector of any locally gapped frustration-free 1D spin system can be approximated to within error $epsilon$ by a degree $O(sqrt{nlog(epsilon^{-1})})$ multivariate polynomial in the interaction terms of the Hamiltonian. This generalizes the optimal bound on the approximate degree of the boolean AND function, which corresponds to the special case of commuting Hamiltonian terms. For 2D spin systems we then construct an approximate ground state projector (AGSP) that employs the optimal 1D approximation in the vicinity of the boundary of the bipartition of interest. This AGSP has sufficiently low entanglement and error to establish the area law using a known technique.



قيم البحث

اقرأ أيضاً

555 - M. B. Hastings 2018
We prove an area law for the entanglement entropy in gapped one dimensional quantum systems. The bound on the entropy grows surprisingly rapidly with the correlation length; we discuss this in terms of properties of quantum expanders and present a co njecture on completely positive maps which may provide an alternate way of arriving at an area law. We also show that, for gapped, local systems, the bound on Von Neumann entropy implies a bound on R{e}nyi entropy for sufficiently large $alpha<1$ and implies the ability to approximate the ground state by a matrix product state.
The projected entangled pair state (PEPS) representation of quantum states on two-dimensional lattices induces an entanglement based hierarchy in state space. We show that the lowest levels of this hierarchy exhibit an enormously rich structure inclu ding states with critical and topological properties as well as resonating valence bond states. We prove, in particular, that coheren
In this work, we make a connection between two seemingly different problems. The first problem involves characterizing the properties of entanglement in the ground state of gapped local Hamiltonians, which is a central topic in quantum many-body phys ics. The second problem is on the quantum communication complexity of testing bipartite states with EPR assistance, a well-known question in quantum information theory. We construct a communication protocol for testing (or measuring) the ground state and use its communication complexity to reveal a new structural property for the ground state entanglement. This property, known as the entanglement spread, roughly measures the ratio between the largest and the smallest Schmidt coefficients across a cut in the ground state. Our main result shows that gapped ground states possess limited entanglement spread across any cut, exhibiting an area law behavior. Our result quite generally applies to any interaction graph with an improved bound for the special case of lattices. This entanglement spread area law includes interaction graphs constructed in [Aharonov et al., FOCS14] that violate a generalized area law for the entanglement entropy. Our construction also provides evidence for a conjecture in physics by Li and Haldane on the entanglement spectrum of lattice Hamiltonians [Li and Haldane, PRL08]. On the technical side, we use recent advances in Hamiltonian simulation algorithms along with quantum phase estimation to give a new construction for an approximate ground space projector (AGSP) over arbitrary interaction graphs.
At the core of every frustrated system, one can identify the existence of frustrated rings that are usually interpreted in terms of single--particle physics. We check this point of view through a careful analysis of the entanglement entropy of both m odels that admit an exact single--particle decomposition of their Hilbert space due to integrability and those for which the latter is supposed to hold only as a low energy approximation. In particular, we study generic spin chains made by an odd number of sites with short-range antiferromagnetic interactions and periodic boundary conditions, thus characterized by a weak, i.e. nonextensive, frustration. While for distances of the order of the correlation length the phenomenology of these chains is similar to that of the non-frustrated cases, we find that correlation functions involving a number of sites scaling like the system size follow different rules. We quantify the long-range correlations through the von Neumann entanglement entropy, finding that indeed it violates the area law, while not diverging with the system size. This behavior is well fitted by a universal law that we derive from the conjectured single--particle picture.
Entanglement entropy obeys area law scaling for typical physical quantum systems. This may naively be argued to follow from locality of interactions. We show that this is not the case by constructing an explicit simple spin chain Hamiltonian with nea rest neighbor interactions that presents an entanglement volume scaling law. This non-translational model is contrived to have couplings that force the accumulation of singlet bonds across the half chain. Our result is complementary to the known relation between non-translational invariant, nearest neighbor interacting Hamiltonians and QMA complete problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا