ﻻ يوجد ملخص باللغة العربية
We study the Crank-Nicolson scheme for stochastic differential equations (SDEs) driven by multidimensional fractional Brownian motion $(B^{1}, dots, B^{m})$ with Hurst parameter $H in (frac 12,1)$. It is well-known that for ordinary differential equations with proper conditions on the regularity of the coefficients, the Crank-Nicolson scheme achieves a convergence rate of $n^{-2}$, regardless of the dimension. In this paper we show that, due to the interactions between the driving processes $ B^{1}, dots, B^{m} $, the corresponding Crank-Nicolson scheme for $m$-dimensional SDEs has a slower rate than for the one-dimensional SDEs. Precisely, we shall prove that when $m=1$ and when the drift term is zero, the Crank-Nicolson scheme achieves the exact convergence rate $n^{-2H}$, while in the case $m=1$ and the drift term is non-zero, the exact rate turns out to be $n^{-frac12 -H}$. In the general case when $m>1$, the exact rate equals $n^{frac12 -2H}$. In all these cases the limiting distribution of the leading error is proved to satisfy some linear SDE driven by Brownian motions independent of the given fractional Brownian motions.
In this note we consider generalized diffusion equations in which the diffusivity coefficient is not necessarily constant in time, but instead it solves a nonlinear fractional differential equation involving fractional Riemann-Liouville time-derivati
In this article, we consider the so-called modified Euler scheme for stochastic differential equations (SDEs) driven by fractional Brownian motions (fBm) with Hurst parameter $frac13<H<frac12$. This is a first-order time-discrete numerical approximat
This article is concerned with stochastic differential equations driven by a $d$ dimensional fractional Brownian motion with Hurst parameter $H>1/4$, understood in the rough paths sense. Whenever the coefficients of the equation satisfy a uniform hyp
This article is concerned with stochastic differential equations driven by a $d$ dimensional fractional Brownian motion with Hurst parameter $H>1/4$, understood in the rough paths sense. Whenever the coefficients of the equation satisfy a uniform ell
In this paper, we investigate suffcient and necessary conditions for the comparison theorem of neutral stochastic functional differential equations driven by G-Brownian motion (G-NSFDE). Moreover, the results extend the ones in the linear expectation case [1] and nonlinear expectation framework [8].