ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum annealing and the variational quantum eigensolver are two promising quantum algorithms to find the ground state of complicated Hamiltonians on near-term quantum devices. However, it is necessary to limit the evolution time or the circuit dept h as much as possible since otherwise decoherence will degrade the computation. Even when this is done, there always exists a non-negligible estimation error in the ground state energy. Here we propose a scalable extrapolation approach to mitigate this error. With an appropriate regression, we can significantly improve the estimation accuracy for quantum annealing and variational quantum eigensolver for fixed quantum resources. The inference is achieved by extrapolating the annealing time to infinity or extrapolating the variance to zero. The only additional overhead is an increase in the number of measurements by a constant factor. We verified the validity of our method with the transverse-field Ising model. The method is robust to noise, and the techniques are applicable to other physics problems. Analytic derivations for the quadratic convergence feature of the residual energy in quantum annealing and the linear convergence feature of energy variance are given.
One-time tables are a class of two-party correlations that can help achieve information-theoretically secure two-party (interactive) classical or quantum computation. In this work we propose a bipartite quantum protocol for generating a simple type o f one-time tables (the correlation in the Popescu-Rohrlich nonlocal box) with partial security. We then show that by running many instances of the first protocol and performing checks on some of them, asymptotically information-theoretically secure generation of one-time tables can be achieved. The first protocol is adapted from a protocol for semi-honest oblivious transfer, with some changes so that no entangled state needs to be prepared, and the communication involves only one qutrit in each direction. We show that some information tradeoffs in the first protocol are similar to that in the semi-honest oblivious transfer protocol. We also obtain two types of inequalities about guessing probabilities in some protocols for generating one-time tables, from a single type of inequality about guessing probabilities in semi-honest oblivious transfer protocols.
In inhomogeneous dielectric media the divergence of the electromagnetic stress is related to the gradients of varepsilon and mu, which is a consequence of Maxwells equations. Investigating spherically symmetric media we show that this seemingly unive rsal relationship is violated for electromagnetic vacuum forces such as the generalized van der Waals and Casimir forces. The stress needs to acquire an additional anomalous pressure. The anomaly is a result of renormalization, the need to subtract infinities in the stress for getting a finite, physical force. The anomalous pressure appears in the stress in media like dark energy appears in the energy-momentum tensor in general relativity. We propose and analyse an experiment to probe the van der Waals anomaly with ultracold atoms. The experiment may not only test an unusual phenomenon of quantum forces, but also an analogue of dark energy, shedding light where nothing is known empirically.
$^{31}$P NMR and MRI are commonly used to study organophosphates that are central to cellular energy metabolism. In some molecules of interest, such as adenosine diphosphate (ADP) and nicotinamide adenine dinucleotide (NAD), pairs of coupled $^{31}$P nuclei in the diphosphate moiety should enable the creation of nuclear spin singlet states, which may be long-lived and can be selectively detected via quantum filters. Here, we show that $^{31}$P singlet states can be created on ADP and NAD, but their lifetimes are shorter than T$_{1}$ and are strongly sensitive to pH. Nevertheless, the singlet states were used with a quantum filter to successfully isolate the $^{31}$P NMR spectra of those molecules from the adenosine triphosphate (ATP) background signal.
Quantum computing has recently exhibited great potentials in predicting chemical properties for various applications in drug discovery, material design, and catalyst optimization. Progress has been made in simulating small molecules, such as LiH and hydrogen chains of up to 12 qubits, by using quantum algorithms such as variational quantum eigensolver (VQE). Yet, originating from limitations of the size and the fidelity of near-term quantum hardware, how to accurately simulate large realistic molecules remains a challenge. Here, integrating an adaptive energy sorting strategy and a classical computational method, the density matrix embedding theory, which effectively finds a shallower quantum circuit and reduces the problem size, respectively, we show a means to circumvent the limitations and demonstrate the potential toward solving real chemical problems. We numerically test the method for the hydrogenation reaction of C6H8 and the equilibrium geometry of the C18 molecule, with basis sets up to cc-pVDZ (at most 144 qubits). The simulation results show accuracies comparable to those of advanced quantum chemistry methods such as coupled-cluster or even full configuration interaction, while the number of qubits required is reduced by an order of magnitude (from 144 qubits to 16 qubits for the C18 molecule) compared to conventional VQE. Our work implies the possibility of solving industrial chemical problems on near-term quantum devices.
Active optical media leading to interaction Hamiltonians of the form $ H = tilde{lambda}, (a + a^{dagger})^{zeta}$ represent a crucial resource for quantum optical technology. In this paper, we address the characterization of those nonlinear media us ing quantum probes, as opposed to semiclassical ones. In particular, we investigate how squeezed probes may improve individual and joint estimation of the nonlinear coupling $tilde{lambda}$ and of the nonlinearity order $zeta$. Upon using tools from quantum estimation, we show that: i) the two parameters are compatible, i.e. the may be jointly estimated without additional quantum noise; ii) the use of squeezed probes improves precision at fixed overall energy of the probe; iii) for low energy probes, squeezed vacuum represent the most convenient choice, whereas for increasing energy an optimal squeezing fraction may be determined; iv) using optimized quantum probes, the scaling of the corresponding precision with energy improves, both for individual and joint estimation of the two parameters, compared to semiclassical coherent probes. We conclude that quantum probes represent a resource to enhance precision in the characterization of nonlinear media, and foresee potential applications with current technology.
131 - Bo Lan , Xue-xiang Xu 2021
Based on N different coherent states with equal weights and phase-space rotation symmetry, we introduce N-headed incoherent superposition states (NHICSSs) and N-headed coherent superposition states (NHCSSs). These N coherent states are associated wit h N-order roots of the same complex number. We study and compare properties of NHICSSs and NHCSSs, including average photon number, Mandel Q parameter, quadrature squeezing, Fock matrix elements and Wigner function. Among all these states, only 2HCSS (i.e., Schrodinger cat state) presents quadrature-squeezing effect. Our theoretical results can be used as a reference for researchers in this field.
We extend the circuit model of quantum comuptation so that the wiring between gates is soft-coded within registers inside the gates. The addresses in these registers can be manipulated and put into superpositions. This aims at capturing indefinite ca usal orders, as well as making their geometrical layout explicit. We show how to implement the quantum switch and the polarizing beam splitter within our model. One difficulty is that the names used as addresses should not matter beyond the wiring they describe, i.e. the evolution should commute with renamings. Yet, the evolution may act nontrivially on these names. Our main technical contribution is a full characterization of such nameblind matrices.
Wave propagation on the surface of cylinders exhibits interferometric self imaging, much like the Talbot effect in the near-field diffraction at periodic gratings. We report the experimental observation of the cylindrical Talbot carpet in weakly-guid ing ring-core fibers for classical light fields. We further show that the ring-core fiber acts as a high-order optical beamsplitter for single photons, whose output can be controlled by the relative phase between the input light fields. By also demonstrating high-quality two-photon interference between indistinguishable photons sent into the ring-core fiber, our findings open the door to applications in optical telecommunications as a compact beam multiplexer as well as in quantum information processing tasks as a scalable realization of a linear optical network.
We study the bootstrap method in harmonic oscillators in one-dimensional quantum mechanics. We find that the problem reduces to the Diracs ladder operator problem and is exactly solvable. Thus, harmonic oscillators allow us to see how the bootstrap method works explicitly.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا