ترغب بنشر مسار تعليمي؟ اضغط هنا

We derive a formula for the adjoint $overline{A}$ of a square-matrix operation of the form $C=f(A)$, where $f$ is holomorphic in the neighborhood of each eigenvalue. We then apply the formula to derive closed-form expressions in particular cases of i nterest such as the case when we have a spectral decomposition $A=UDU^{-1}$, the spectrum cut-off $C=A_+$ and the Nearest Correlation Matrix routine. Finally, we explain how to simplify the computation of adjoints for regularized linear regression coefficients.
This paper presents how to apply the stochastic collocation technique to assets that can not move below a boundary. It shows that the polynomial collocation towards a lognormal distribution does not work well. Then, the potentials issues of the relat ed collocated local volatility model (CLV) are explored. Finally, a simple analytical expression for the Dupire local volatility derived from the option prices modelled by stochastic collocation is given.
We extend the approach of Carr, Itkin and Muravey, 2021 for getting semi-analytical prices of barrier options for the time-dependent Heston model with time-dependent barriers by applying it to the so-called $lambda$-SABR stochastic volatility model. In doing so we modify the general integral transform method (see Itkin, Lipton, Muravey, Generalized integral transforms in mathematical finance, World Scientific, 2021) and deliver solution of this problem in the form of Fourier-Bessel series. The weights of this series solve a linear mixed Volterra-Fredholm equation (LMVF) of the second kind also derived in the paper. Numerical examples illustrate speed and accuracy of our method which are comparable with those of the finite-difference approach at small maturities and outperform them at high maturities even by using a simplistic implementation of the RBF method for solving the LMVF.
The Fourier cosine expansion (COS) method is used for pricing European options numerically very fast. To apply the COS method, a truncation interval for the density of the log-returns need to be provided. Using Markovs inequality, we derive a new for mula to obtain the truncation interval and prove that the interval is large enough to ensure convergence of the COS method within a predefined error tolerance. We also show by several examples that the classical approach to determine the truncation interval by cumulants may lead to serious mispricing. Usually, the computational time of the COS method is of similar magnitude in both cases.
Portfolio managers faced with limited sample sizes must use factor models to estimate the covariance matrix of a high-dimensional returns vector. For the simplest one-factor market model, success rests on the quality of the estimated leading eigenvec tor beta. When only the returns themselves are observed, the practitioner has available the PCA estimate equal to the leading eigenvector of the sample covariance matrix. This estimator performs poorly in various ways. To address this problem in the high-dimension, limited sample size asymptotic regime and in the context of estimating the minimum variance portfolio, Goldberg, Papanicolau, and Shkolnik developed a shrinkage method (the GPS estimator) that improves the PCA estimator of beta by shrinking it toward a constant target unit vector. In this paper we continue their work to develop a more general framework of shrinkage targets that allows the practitioner to make use of further information to improve the estimator. Examples include sector separation of stock betas, and recent information from prior estimates. We prove some precise statements and illustrate the resulting improvements over the GPS estimator with some numerical experiments.
Evaluating moving average options is a tough computational challenge for the energy and commodity market as the payoff of the option depends on the prices of a certain underlying observed on a moving window so, when a long window is considered, the p ricing problem becomes high dimensional. We present an efficient method for pricing Bermudan style moving average options, based on Gaussian Process Regression and Gauss-Hermite quadrature, thus named GPR-GHQ. Specifically, the proposed algorithm proceeds backward in time and, at each time-step, the continuation value is computed only in a few points by using Gauss-Hermite quadrature, and then it is learned through Gaussian Process Regression. We test the proposed approach in the Black-Scholes model, where the GPR-GHQ method is made even more efficient by exploiting the positive homogeneity of the continuation value, which allows one to reduce the problem size. Positive homogeneity is also exploited to develop a binomial Markov chain, which is able to deal efficiently with medium-long windows. Secondly, we test GPR-GHQ in the Clewlow-Strickland model, the reference framework for modeling prices of energy commodities. Finally, we consider a challenging problem which involves double non-Markovian feature, that is the rough-Bergomi model. In this case, the pricing problem is even harder since the whole history of the volatility process impacts the future distribution of the process. The manuscript includes a numerical investigation, which displays that GPR-GHQ is very accurate and it is able to handle options with a very long window, thus overcoming the problem of high dimensionality.
636 - Qi Feng , Man Luo , Zhaoyu Zhang 2021
We propose a deep signature/log-signature FBSDE algorithm to solve forward-backward stochastic differential equations (FBSDEs) with state and path dependent features. By incorporating the deep signature/log-signature transformation into the recurrent neural network (RNN) model, our algorithm shortens the training time, improves the accuracy, and extends the time horizon comparing to methods in the existing literature. Moreover, our algorithms can be applied to a wide range of applications such as state and path dependent option pricing involving high-frequency data, model ambiguity, and stochastic games, which are linked to parabolic partial differential equations (PDEs), and path-dependent PDEs (PPDEs). Lastly, we also derive the convergence analysis of the deep signature/log-signature FBSDE algorithm.
When solving the American options with or without dividends, numerical methods often obtain lower convergence rates if further treatment is not implemented even using high-order schemes. In this article, we present a fast and explicit fourth-order co mpact scheme for solving the free boundary options. In particular, the early exercise features with the asset option and option sensitivity are computed based on a coupled of nonlinear PDEs with fixed boundaries for which a high order analytical approximation is obtained. Furthermore, we implement a new treatment at the left boundary by introducing a third-order Robin boundary condition. Rather than computing the optimal exercise boundary from the analytical approximation, we simply obtain it from the asset option based on the linear relationship at the left boundary. As such, a high order convergence rate can be achieved. We validate by examples that the improvement at the left boundary yields a fourth-order convergence rate without further implementation of mesh refinement, Rannacher time-stepping, and/or smoothing of the initial condition. Furthermore, we extensively compare, the performance of our present method with several 5(4) Runge-Kutta pairs and observe that Dormand and Prince and Bogacki and Shampine 5(4) pairs are faster and provide more accurate numerical solutions. Based on numerical results and comparison with other existing methods, we can validate that the present method is very fast and provides more accurate solutions with very coarse grids.
We present a reinforcement learning (RL) approach for robust optimisation of risk-aware performance criteria. To allow agents to express a wide variety of risk-reward profiles, we assess the value of a policy using rank dependent expected utility (RD EU). RDEU allows the agent to seek gains, while simultaneously protecting themselves against downside events. To robustify optimal policies against model uncertainty, we assess a policy not by its distribution, but rather, by the worst possible distribution that lies within a Wasserstein ball around it. Thus, our problem formulation may be viewed as an actor choosing a policy (the outer problem), and the adversary then acting to worsen the performance of that strategy (the inner problem). We develop explicit policy gradient formulae for the inner and outer problems, and show its efficacy on three prototypical financial problems: robust portfolio allocation, optimising a benchmark, and statistical arbitrage
260 - J. Gavin , M. Crane 2021
In this paper, the cross-correlations of cryptocurrency returns are analysed. The paper examines one years worth of data for 146 cryptocurrencies from the period January 1 2019 to December 31 2019. The cross-correlations of these returns are firstly analysed by comparing eigenvalues and eigenvector components of the cross-correlation matrix C with Random Matrix Theory (RMT) assumptions. Results show that C deviates from these assumptions indicating that C contains genuine information about the correlations between the different cryptocurrencies. From here, Louvain community detection method is applied as a clustering mechanism and 15 community groupings are detected. Finally, PCA is completed on the standardised returns of each of these clusters to create a portfolio of cryptocurrencies for investment. This method selects a portfolio which contains a number of high value coins when compared back against their market ranking in the same year. In the interest of assessing continuity of the initial results, the method is also applied to a smaller dataset of the top 50 cryptocurrencies across three time periods of T = 125 days, which produces similar results. The results obtained in this paper show that these methods could be useful for constructing a portfolio of optimally performing cryptocurrencies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا