ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we explore the effectiveness of an artificial mini-magnetosphere as a potential radiation shelter for long term human space missions. Our study includes the differences that the plasma environment makes to the efficiency of the shieldin g from the high energy charged particle component of solar and cosmic rays, which radically alters the power requirements. The incoming electrostatic charges are shielded by fields supported by the self captured environmental plasma of the solar wind, potentially augmented with additional density. The artificial magnetic field generated on board acts as the means of confinement and control. Evidence for similar behaviour of electromagnetic fields and ionised particles in interplanetary space can be gained by the example of the enhanced shielding effectiveness of naturally occurring mini-magnetospheres on the moon. The shielding effect of surface magnetic fields of the order of ~100s nanoTesla is sufficient to provide effective shielding from solar proton bombardment that culminate in visible discolouration of the lunar regolith known as lunar swirls. Supporting evidence comes from theory, laboratory experiments and computer simulations that have been obtained on this topic. The result of this work is, hopefully, to provide the tools for a more realistic estimation of the resources versus effectiveness and risk that spacecraft engineers need to work with in designing radiation protection for long-duration human space missions.
While pressure balance can predict how far the magnetopause will move in response to an upstream pressure change, it cannot determine how fast the transient reponse will be. Using Time History of Events and Macroscale Interactions during Substorms (T HEMIS), we present multipoint observations revealing, for the first time, strong (thermal + magnetic) pressure gradients in the magnetosheath due to a foreshock transient, most likely a Hot Flow Anomaly (HFA), which decreased the total pressure upstream of the bow shock. By converting the spacecraft time series into a spatial picture, we quantitatively show that these pressure gradients caused the observed acceleration of the plasma, resulting in fast sunward magnetosheath flows ahead of a localised outward distortion of the magnetopause. The acceleratation of the magnetosheath plasma was fast enough to keep the peak of the magnetopause bulge at approximately the equilibrium position i.e. in pressure balance. Therefore, we show that pressure gradients in the magnetosheath due to transient changes in the total pressure upstream can directly drive anomalous flows and in turn are important in transmitting information from the bow shock to the magnetopause.
166 - X. Cheng , M. D. Ding , J. Zhang 2014
In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmos pheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1--0.6 km s$^{-1}$. The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field structures further reveal the locations of the reconnection to be in a bald-patch region and in a hyperbolic flux tube. About two hours before the eruption, indications for a second MFR in the form of an S-shaped hot channel are seen. It lies above the original MFR that continuously exists and includes a filament. The whole structure thus makes up a stable double-decker MFR system for hours prior to the eruption. Eventually, after entering the domain of instability, the high-lying MFR impulsively erupts to generate a fast coronal mass ejection and X-class flare; while the low-lying MFR remains behind and continuously maintains the sigmoidicity of the active region.
172 - D. Tsiklauri 2014
Previous studies [Malara et al ApJ, 533, 523 (2000)] considered small-amplitude Alfven wave (AW) packets in Arnold-Beltrami-Childress (ABC) magnetic field using WKB approximation. In this work linearly polarised Alfven wave dynamics in ABC magnetic f ield via direct 3D MHD numerical simulation is studied for the first time. Gaussian AW pulse with length-scale much shorter than ABC domain length and harmonic AW with wavelength equal to ABC domain length are studied for four different resistivities. While it is found that AWs dissipate quickly in the ABC field, surprisingly, AW perturbation energy increases in time. In the case of the harmonic AW perturbation energy growth is transient in time, attaining peaks in both velocity and magnetic perturbation energies within timescales much smaller than resistive time. In the case of the Gaussian AW pulse velocity perturbation energy growth is still transient in time, attaining a peak within few resistive times, while magnetic perturbation energy continues to grow. It is also shown that the total magnetic energy decreases in time and this is governed by the resistive evolution of the background ABC magnetic field rather than AW damping. On contrary, when background magnetic field is uniform, the total magnetic energy decrease is prescribed by AW damping, because there is no resistive evolution of the background. By considering runs with different amplitudes and by analysing perturbation spectra, possible dynamo action by AW perturbation-induced peristaltic flow and inverse cascade of magnetic energy have been excluded. Therefore, the perturbation energy growth is attributed to a new instability. The growth rate appears to be dependent on the value of the resistivity and spatial scale of the AW disturbance. Thus, when going beyond WKB approximation, AW damping, described by full MHD equations, does not guarantee decrease of perturbation energy.
The application of linear kinetic treatments to plasma waves, damping, and instability requires favorable inequalities between the associated linear timescales and timescales for nonlinear (e.g., turbulence) evolution. In the solar wind these two typ es of timescales may be directly compared using standard Kolmogorov-style analysis and observational data. The estimated local nonlinear magnetohydrodynamic cascade times, evaluated as relevant kinetic scales are approached, remain slower than the cyclotron period, but comparable to, or faster than, the typical timescales of instabilities, anisotropic waves, and wave damping. The variation with length scale of the turbulence timescales is supported by observations and simulations. On this basis the use of linear theory - which assumes constant parameters to calculate the associated kinetic rates - may be questioned. It is suggested that the product of proton gyrofrequency and nonlinear time at the ion gyroscales provides a simple measure of turbulence influence on proton kinetic behavior.
64 - Yao Chen , Guohui Du , Li Feng 2014
Simultaneous radio and extreme ultraviolet (EUV)/white-light imaging data are examined for a solar type II radio burst occurring on 2010 March 18 to deduce its source location. Using a bow-shock model, we reconstruct the 3-dimensional EUV wave front (presumably the type-II emitting shock) based on the imaging data of the two STEREO spacecraft. It is then combined with the Nanc{c}ay radio imaging data to infer the 3-dimensional position of the type II source. It is found that the type II source coincides with the interface between the CME EUV wave front and a nearby coronal ray structure, providing evidence that the type II emission is physically related to the CME-ray interaction. This result, consistent with those of previous studies, is based on simultaneous radio and EUV imaging data for the first time.
121 - C. B. Wang , 2014
A scenario is proposed to explain the preferential heating of minor ions and differential streaming velocity between minor ions and protons observed in the solar corona and in the solar wind. It is demonstrated by test particle simulations that minor ions can be nearly fully picked up by intrinsic Alfven-cyclotron waves observed in the solar wind based on the observed wave energy density. Both high frequency ion-cyclotron waves and low frequency Alfven waves play crucial roles in the pickup process. A minor ion can first gain a high magnetic moment through the resonant wave-particle interaction with ion-cyclotron waves, and then this ion with a large magnetic moment can be trapped by magnetic mirror-like field structures in the presence of the lower-frequency Alfven waves. As a result, the ion is picked up by these Alfven-cyclotron waves. However, minor ions can only be partially picked up in the corona due to low wave energy density and low plasma beta. During the pickup process, minor ions are stochastically heated and accelerated by Alfven-cyclotron waves so that they are hotter and flow faster than protons. The compound effect of Alfven waves and ion-cyclotron waves is important on the heating and acceleration of minor ions. The kinetic properties of minor ions from simulation results are generally consistent with in situ and remote features observed in the solar wind and solar corona.
A statistical relationship between magnetic reconnection, current sheets and intermittent turbulence in the solar wind is reported for the first time using in-situ measurements from the Wind spacecraft at 1 AU. We identify intermittency as non-Gaussi an fluctuations in increments of the magnetic field vector, $mathbf{B}$, that are spatially and temporally non-uniform. The reconnection events and current sheets are found to be concentrated in intervals of intermittent turbulence, identified using the partial variance of increments method: within the most non-Gaussian 1% of fluctuations in $mathbf{B}$, we find 87%-92% of reconnection exhausts and $sim$9% of current sheets. Also, the likelihood that an identified current sheet will also correspond to a reconnection exhaust increases dramatically as the least intermittent fluctuations are removed from the dataset. Hence, the turbulent solar wind contains a hierarchy of intermittent magnetic field structures that are increasingly linked to current sheets, which in turn are progressively more likely to correspond to sites of magnetic reconnection. These results could have far reaching implications for laboratory and astrophysical plasmas where turbulence and magnetic reconnection are ubiquitous.
The structure of the diffusion regions in antiparallel magnetic reconnection is investigated by means of a theory and a Vlasov simulation. The magnetic diffusion is considered as relaxation to the frozen-in state, which depends on a reference velocit y field. A field-aligned component of the frozen-in condition is proposed to evaluate a diffusion-like process. Diffusion signatures with respect to ion and electron bulk flows indicate the ion and electron diffusion regions near the reconnection site. The electron diffusion region resembles the energy dissipation region. These results are favorable to a previous expectation that an electron-scale dissipation region is surrounded by an ion-scale Hall-physics region.
203 - E. Lee , V.S. Lukin , 2014
Flux emergence is widely recognized to play an important role in the initiation of coronal mass ejections. The Chen-Shibata (2000) model, which addresses the connection between emerging flux and flux rope eruptions, can be implemented numerically to study how emerging flux through the photosphere can impact the eruption of a pre-existing coronal flux rope. The models sensitivity to the initial conditions and reconnection micro-physics is investigated with a parameter study. In particular, we aim to understand the stability of the coronal flux rope in the context of X-point collapse and the effects of boundary driving in both unstratified and stratified atmospheres. In the absence of driving, we assess the behavior of waves in the vicinity of the X-point. With boundary driving applied, we study the effects of reconnection micro-physics and atmospheric stratification on the eruption. We find that the Chen-Shibata equilibrium can be unstable to an X-point collapse even in the absence of driving due to wave accumulation at the X-point. However, the equilibrium can be stabilized by reducing the compressibility of the plasma, which allows small-amplitude waves to pass through the X-point without accumulation. Simulations with the photospheric boundary driving evaluate the impact of reconnection micro-physics and atmospheric stratification on the resulting dynamics: we show the evolution of the system to be determined primarily by the structure of the global magnetic fields with little sensitivity to the micro-physics of magnetic reconnection; and in a stratified atmosphere, we identify a novel mechanism for producing quasi-periodic behavior at the reconnection site behind a rising flux rope as a possible explanation of similar phenomena observed in solar and stellar flares.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا