ترغب بنشر مسار تعليمي؟ اضغط هنا

The famous $n$-queens problem asks how many ways there are to place $n$ queens on an $n times n$ chessboard so that no two queens can attack one another. The toroidal $n$-queens problem asks the same question where the board is considered on the surf ace of the torus and was asked by P{o}lya in 1918. Let $Q(n)$ denote the number of $n$-queens configurations on the classical board and $T(n)$ the number of toroidal $n$-queens configurations. P{o}lya showed that $T(n)>0$ if and only if $n equiv 1,5 mod 6$ and much more recently, in 2017, Luria showed that $T(n)leq ((1+o(1))ne^{-3})^n$ and conjectured equality when $n equiv 1,5 mod 6$. Our main result is a proof of this conjecture, thus answering P{o}lyas question asymptotically. Furthermore, we also show that $Q(n)geq((1+o(1))ne^{-3})^n$ for all $n$ sufficiently large, which was independently proved by Luria and Simkin. Combined with our main result and an upper bound of Luria, this completely settles a conjecture of Rivin, Vardi and Zimmmerman from 1994 regarding both $Q(n)$ and $T(n)$. Our proof combines a random greedy algorithm to count almost configurations with a complex absorbing strategy that uses ideas from the recently developed methods of randomised algebraic construction and iterative absorption.
We describe some metric properties of incomparability graphs. We consider the problem of the existence of infinite paths, either induced or isometric, in the incomparability graph of a poset. Among other things, we show that if the incomparability gr aph of a poset is connected and has infinite diameter then it contains an infinite induced path and furthermore if the diameter of set of vertices of degree at least $3$ is unbounded the graph contains as an induced subgraph either a comb or a kite. This result allows to draw a line between ages of permutation graphs which are well quasi order and those which are not.
A fan $F_n$ is a graph consisting of $n$ triangles, all having precisely one common vertex. Currently, the best known bounds for the Ramsey number $R(F_n)$ are $9n/2-5 leq R(F_n) leq 11n/2+6$, obtained by Chen, Yu and Zhao. We improve the upper bound to $31n/6+O(1)$.
We study the optimization version of the equal cardinality set partition problem (where the absolute difference between the equal sized partitions sums are minimized). While this problem is NP-hard and requires exponential complexity to solve in gene ral, we have formulated a weaker version of this NP-hard problem, where the goal is to find a locally optimal solution. The local optimality considered in our work is under any swap between the opposing partitions element pairs. To this end, we designed an algorithm which can produce such a locally optimal solution in $O(N^2)$ time and $O(N)$ space. Our approach does not require positive or integer inputs and works equally well under arbitrary input precisions. Thus, it is widely applicable in different problem scenarios.
In this series of papers, the primary goal is to enumerate Hamiltonian cycles (HCs) on the grid cylinder graphs $P_{m+1}times C_n$, where $n$ is allowed to grow whilst $m$ is fixed. In Part~I, we studied the so-called non-contractible HCs. Here, in P art~II, we proceed further on to the contractible case. We propose two different novel characterizations of contractible HCs, from which we construct digraphs for enumerating the contractible HCs. Given the impression which the computational data for $m leq 9$ convey, we conjecture that the asymptotic domination of the contractible HCs versus the non-contractible HCs, among the total number of HCs, depends on the parity of $m$.}
We initiate the study of model structures on (categories induced by) lattice posets, a subject we dub homotopical combinatorics. In the case of a finite total order $[n]$, we enumerate all model structures, exhibiting a rich combinatorial structure e ncoded by Shapiros Catalan triangle. This is an application of previous work of the authors on the theory of $N_infty$-operads for cyclic groups of prime power order, along with new structural insights concerning extending choices of certain model structures on subcategories of $[n]$.
144 - Mikhail Isaev , Mihyun Kang 2021
We determine the asymptotic behaviour of the chromatic number of exchangeable random graphs defined by step-regulated graphons. Furthermore, we show that the upper bound holds for a general graphon. We also extend these results to sparse random graphs obtained by percolations on graphons.
A set of vertices $Xsubseteq V$ in a simple graph $G(V,E)$ is irredundant if each vertex $xin X$ is either isolated in the induced subgraph $langle Xrangle$ or else has a private neighbor $yin Vsetminus X$ that is adjacent to $x$ and to no other vert ex of $X$. The emph{irredundant Ramsey number} $s(m,n)$ is the smallest $N$ such that in every red-blue coloring of the edges of the complete graph of order $N$, either the blue subgraph contains an $m$-element irredundant set or the red subgraph contains an $n$-element irredundant set. The emph{mixed Ramsey number} $t(m,n)$ is the smallest $N$ for which every red-blue coloring of the edges of $K_N$ yields an $m$-element irredundant set in the blue subgraph or an $n$-element independent set in the red subgraph. In this paper, we first improve the upper bound of $t(3,n)$; using this result, we confirm that a conjecture proposed by Chen, Hattingh, and Rousseau, that is, $lim_{nrightarrow infty}frac{t(m,n)}{r(m,n)}=0$ for each fixed $mgeq 3$, is true for $mleq 4$. At last, we prove that $s(3,9)$ and $t(3,9)$ are both equal to $26$.
167 - Norio Konno , Shunya Tamura 2021
In this paper, following the recent paper on Walk/Zeta Correspondence by the first author and his coworkers, we compute the zeta function for the three- and four-state quantum walk and correlated random walk, and the multi-state random walk on the on e-dimensional torus by using the Fourier analysis. We deal with also the four-state quantum walk and correlated random walk on the two-dimensional torus. In addition, we introduce a new class of models determined by the generalized Grover matrix bridging the gap between the Grover matrix and the positive-support of the Grover matrix. Finally, we give a generalized version of the Konno-Sato theorem for the new class. As a corollary, we calculate the zeta function for the generalized Grover matrix on the d-dimensional torus.
A connected graph $G$ is said to be $k$-connected if it has more than $k$ vertices and remains connected whenever fewer than $k$ vertices are deleted. In this paper, for a connected graph $G$ with sufficiently large order, we present a tight sufficie nt condition for $G$ with fixed minimum degree to be $k$-connected based on the $Q$-index. Our result can be viewed as a spectral counterpart of the corresponding Dirac type condition.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا