ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose 3DETR, an end-to-end Transformer based object detection model for 3D point clouds. Compared to existing detection methods that employ a number of 3D-specific inductive biases, 3DETR requires minimal modifications to the vanilla Transformer block. Specifically, we find that a standard Transformer with non-parametric queries and Fourier positional embeddings is competitive with specialized architectures that employ libraries of 3D-specific operators with hand-tuned hyperparameters. Nevertheless, 3DETR is conceptually simple and easy to implement, enabling further improvements by incorporating 3D domain knowledge. Through extensive experiments, we show 3DETR outperforms the well-established and highly optimized VoteNet baselines on the challenging ScanNetV2 dataset by 9.5%. Furthermore, we show 3DETR is applicable to 3D tasks beyond detection, and can serve as a building block for future research.
Holographic displays can generate light fields by dynamically modulating the wavefront of a coherent beam of light using a spatial light modulator, promising rich virtual and augmented reality applications. However, the limited spatial resolution of existing dynamic spatial light modulators imposes a tight bound on the diffraction angle. As a result, todays holographic displays possess low {e}tendue, which is the product of the display area and the maximum solid angle of diffracted light. The low {e}tendue forces a sacrifice of either the field of view (FOV) or the display size. In this work, we lift this limitation by presenting neural {e}tendue expanders. This new breed of optical elements, which is learned from a natural image dataset, enables higher diffraction angles for ultra-wide FOV while maintaining both a compact form factor and the fidelity of displayed contents to human viewers. With neural {e}tendue expanders, we achieve 64$times$ {e}tendue expansion of natural images with reconstruction quality (measured in PSNR) over 29dB on simulated retinal-resolution images. As a result, the proposed approach with expansion factor 64$times$ enables high-fidelity ultra-wide-angle holographic projection of natural images using an 8K-pixel SLM, resulting in a 18.5 mm eyebox size and 2.18 steradians FOV, covering 85% of the human stereo FOV.
205 - Romuald A. Janik 2021
We analyze the spaces of images encoded by generative networks of the BigGAN architecture. We find that generic multiplicative perturbations away from the photo-realistic point often lead to images which appear as artistic renditions of the correspon ding objects. This demonstrates an emergence of aesthetic properties directly from the structure of the photo-realistic environment coupled with its neural network parametrization. Moreover, modifying a deep semantic part of the neural network encoding leads to the appearance of symbolic visual representations.
Disentangling data into interpretable and independent factors is critical for controllable generation tasks. With the availability of labeled data, supervision can help enforce the separation of specific factors as expected. However, it is often expe nsive or even impossible to label every single factor to achieve fully-supervised disentanglement. In this paper, we adopt a general setting where all factors that are hard to label or identify are encapsulated as a single unknown factor. Under this setting, we propose a flexible weakly-supervised multi-factor disentanglement framework DisUnknown, which Distills Unknown factors for enabling multi-conditional generation regarding both labeled and unknown factors. Specifically, a two-stage training approach is adopted to first disentangle the unknown factor with an effective and robust training method, and then train the final generator with the proper disentanglement of all labeled factors utilizing the unknown distillation. To demonstrate the generalization capacity and scalability of our method, we evaluate it on multiple benchmark datasets qualitatively and quantitatively and further apply it to various real-world applications on complicated datasets.
We present Wav2Lip-Emotion, a video-to-video translation architecture that modifies facial expressions of emotion in videos of speakers. Previous work modifies emotion in images, uses a single image to produce a video with animated emotion, or puppet s facial expressions in videos with landmarks from a reference video. However, many use cases such as modifying an actors performance in post-production, coaching individuals to be more animated speakers, or touching up emotion in a teleconference require a video-to-video translation approach. We explore a method to maintain speakers lip movements, identity, and pose while translating their expressed emotion. Our approach extends an existing multi-modal lip synchronization architecture to modify the speakers emotion using L1 reconstruction and pre-trained emotion objectives. We also propose a novel automated emotion evaluation approach and corroborate it with a user study. These find that we succeed in modifying emotion while maintaining lip synchronization. Visual quality is somewhat diminished, with a trade off between greater emotion modification and visual quality between model variants. Nevertheless, we demonstrate (1) that facial expressions of emotion can be modified with nothing other than L1 reconstruction and pre-trained emotion objectives and (2) that our automated emotion evaluation approach aligns with human judgements.
Text detection in natural scene images for content analysis is an interesting task. The research community has seen some great developments for English/Mandarin text detection. However, Urdu text extraction in natural scene images is a task not well addressed. In this work, firstly, a new dataset is introduced for Urdu text in natural scene images. The dataset comprises of 500 standalone images acquired from real scenes. Secondly, the channel enhanced Maximally Stable Extremal Region (MSER) method is applied to extract Urdu text regions as candidates in an image. Two-stage filtering mechanism is applied to eliminate non-candidate regions. In the first stage, text and noise are classified based on their geometric properties. In the second stage, a support vector machine classifier is trained to discard non-text candidate regions. After this, text candidate regions are linked using centroid-based vertical and horizontal distances. Text lines are further analyzed by a different classifier based on HOG features to remove non-text regions. Extensive experimentation is performed on the locally developed dataset to evaluate the performance. The experimental results show good performance on test set images. The dataset will be made available for research use. To the best of our knowledge, the work is the first of its kind for the Urdu language and would provide a good dataset for free research use and serve as a baseline performance on the task of Urdu text extraction.
We consider the problem of complementary fashion prediction. Existing approaches focus on learning an embedding space where fashion items from different categories that are visually compatible are closer to each other. However, creating such labeled outfits is intensive and also not feasible to generate all possible outfit combinations, especially with large fashion catalogs. In this work, we propose a semi-supervised learning approach where we leverage large unlabeled fashion corpus to create pseudo-positive and pseudo-negative outfits on the fly during training. For each labeled outfit in a training batch, we obtain a pseudo-outfit by matching each item in the labeled outfit with unlabeled items. Additionally, we introduce consistency regularization to ensure that representation of the original images and their transformations are consistent to implicitly incorporate colour and other important attributes through self-supervision. We conduct extensive experiments on Polyvore, Polyvore-D and our newly created large-scale Fashion Outfits datasets, and show that our approach with only a fraction of labeled examples performs on-par with completely supervised methods.
In the field of reproductive health, a vital aspect for the detection of male fertility issues is the analysis of human semen quality. Two factors of importance are the morphology and motility of the sperm cells. While the former describes defects in different parts of a spermatozoon, the latter measures the efficient movement of cells. For many non-human species, so-called Computer-Aided Sperm Analysis systems work well for assessing these characteristics from microscopic video recordings but struggle with human sperm samples which generally show higher degrees of debris and dead spermatozoa, as well as lower overall sperm motility. Here, machine learning methods that harness large amounts of training data to extract salient features could support physicians with the detection of fertility issues or in vitro fertilisation procedures. In this work, the overall motility of given sperm samples is predicted with the help of a machine learning framework integrating unsupervised methods for feature extraction with downstream regression models. The models evaluated herein improve on the state-of-the-art for video-based sperm-motility prediction.
Learning-based trajectory prediction models have encountered great success, with the promise of leveraging contextual information in addition to motion history. Yet, we find that state-of-the-art forecasting methods tend to overly rely on the agents dynamics, failing to exploit the semantic cues provided at its input. To alleviate this issue, we introduce CAB, a motion forecasting model equipped with a training procedure designed to promote the use of semantic contextual information. We also introduce two novel metrics -- dispersion and convergence-to-range -- to measure the temporal consistency of successive forecasts, which we found missing in standard metrics. Our method is evaluated on the widely adopted nuScenes Prediction benchmark.
A cornerstone of geometric reconstruction, rotation averaging seeks the set of absolute rotations that optimally explains a set of measured relative orientations between them. In spite of being an integral part of bundle adjustment and structure-from -motion, averaging rotations is both a non-convex and high-dimensional optimization problem. In this paper, we address it from a maximum likelihood estimation standpoint and make a twofold contribution. Firstly, we set forth a novel initialization-free primal-dual method which we show empirically to converge to the global optimum. Further, we derive what is to our knowledge, the first optimal closed-form solution for rotation averaging in cycle graphs and contextualize this result within spectral graph theory. Our proposed methods achieve a significant gain both in precision and performance.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا