ترغب بنشر مسار تعليمي؟ اضغط هنا

We report Herschel/PACS photometric observations at 70 {mu}m and 160 {mu}m of LRLL54361 - a suspected binary protostar that exhibits periodic (P=25.34 days) flux variations at shorter wavelengths (3.6 {mu}m and 4.5 {mu}m) thought to be due to pulsed accretion caused by binary motion. The PACS observations show unprecedented flux variation at these far-infrared wavelengths that are well cor- related with the variations at shorter wavelengths. At 70 {mu}m the object increases its flux by a factor of six while at 160{mu}m the change is about a factor of two, consistent with the wavelength dependence seen in the far-infrared spectra. The source is marginally resolved at 70 {mu}m with varying FWHM. Deconvolved images of the sources show elongations exactly matching the outflow cavities traced by the scattered light observations. The spatial variations are anti-correlated with the flux variation indicating that a light echo is responsible for the changes in FWHM. The observed far-infrared flux variability indicates that the disk and en- velope of this source is periodically heated by the accretion pulses of the central source, and suggests that such long wavelength variability in general may provide a reasonable proxy for accretion variations in protostars.
This paper provides an overview of the PACS photometer flux calibration concept, in particular for the principal observation mode, the scan map. The absolute flux calibration is tied to the photospheric models of five fiducial stellar standards (alph a Boo, alpha Cet, alpha Tau, beta And, gamma Dra). The data processing steps to arrive at a consistent and homogeneous calibration are outlined. In the current state the relative photometric accuracy is around 2% in all bands. Starting from the present calibration status, the characterization and correction for instrumental effects affecting the relative calibration accuracy is described and an outlook for the final achievable calibration numbers is given. After including all the correction for the instrumental effects, the relative photometric calibration accuracy (repeatability) will be as good as 0.5% in the blue and green band and 2% in the red band. This excellent calibration starts to reveal possible inconsistencies between the models of the K-type and the M-type stellar calibrators. The absolute calibration accuracy is therefore mainly limited by the 5% uncertainty of the celestial standard models in all three bands. The PACS bolometer response was extremely stable over the entire Herschel mission and a single, time-independent response calibration file is sufficient for the processing and calibration of the science observations. The dedicated measurements of the internal calibration sources were needed only to characterize secondary effects. No aging effects of the bolometer or the filters have been found. Also, we found no signs of filter leaks. The PACS photometric system is very well characterized with a constant energy spectrum nu*Fnu = lambda*Flambda = const as a reference. Colour corrections for a wide range of sources SEDs are determined and tabulated.
We present a Spitzer IRAC and MIPS survey of NGC 2451 A and B, two open clusters in the 50-80 Myr age range. We complement these data with extensive ground-based photometry and spectroscopy to identify the cluster members in the Spitzer survey field. We find only two members with 8 micron excesses. The incidence of excesses at 24 microns is much higher, 11 of 31 solar-like stars and 1 of 7 early-type (A) stars. This work nearly completes the debris disk surveys with Spitzer of clusters in the 30-130 Myr range. This range is of inte rest because it is when large planetesimal collisions may have still been relatively common (as indicated by the one that led to the formation of the Moon during this period of the evolution of the Solar System). We review the full set of surveys and find that there are only three possible cases out of about 250 roughly solar-mass stars where very large excesses suggest that such collisions have occurred recently.
We present HST/NICMOS Paschen alpha images and low and high resolution IRS spectra of photoevaporating disk-tail systems originally detected at 24 micron near O stars. We find no Paschen alpha emission in any of the systems. The resulting upper limit s correspond to about 0.000002-0.000003 solar mass of mass in hydrogen in the tails suggesting that the gas is severely depleted. The IRAC data and the low resolution 5-12 micron IRS spectra provide evidence for an inner disk while high resolution long wavelength (14-30 micron) IRS spectra confirm the presence of a gas free ``tail that consists of ~ 0.01 to ~ 1 micron dust grains originating in the outer parts of the circumstellar disks. Overall our observations support theoretical predictions in which photoevaporation removes the gas relatively quickly (<= 100000 yrs) from the outer region of a protoplanetary disk but leaves an inner more robust and possibly gas-rich disk component of radius 5-10 AU. With the gas gone, larger solid bodies in the outer disk can experience a high rate of collisions and produce elevated amounts of dust. This dust is being stripped from the system by the photon pressure of the O star to form a gas-free dusty tail.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا