ترغب بنشر مسار تعليمي؟ اضغط هنا

Microwave detectors based on the spin-transfer torque diode effect are among the key emerging spintronic devices. By utilizing the spin of electrons in addition to charge, they have the potential to overcome the theoretical performance limits of thei r semiconductor (Schottky) counterparts, which cannot operate at low input power. Here, we demonstrate nanoscale microwave detectors exhibiting record-high detection sensitivity of 75400 mV mW$^{-1}$ at room temperature, without any external bias fields, for input microwave power down to 10 nW. This sensitivity is 20x and 6x larger than state-of-the-art Schottky diode detectors (3800 mV mW$^{-1}$) and existing spintronic diodes with >1000 Oe magnetic bias (12000 mV mW$^{-1}$), respectively. Micromagnetic simulations supported by microwave emission measurements reveal the essential role of the injection locking to achieve this sensitivity performance. The results enable dramatic improvements in the design of low input power microwave detectors, with wide-ranging applications in telecommunications, radars, and smart networks.
The spin-transfer nano-oscillator (STNO) offers the possibility of using the transfer of spin angular momentum via spin-polarized currents to generate microwave signals. However, at present STNO microwave emission mainly relies on both large drive cu rrents and external magnetic fields. These issues hinder the implementation of STNOs for practical applications in terms of power dissipation and size. Here, we report microwave measurements on STNOs built with MgO-based magnetic tunnel junctions having a planar polarizer and a perpendicular free layer, where microwave emission with large output power, excited at ultralow current densities, and in the absence of any bias magnetic fields is observed. The measured critical current density is over one order of magnitude smaller than previously reported. These results suggest the possibility of improved integration of STNOs with complementary metal-oxide-semiconductor technology, and could represent a new route for the development of the next-generation of on-chip oscillators.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا