ترغب بنشر مسار تعليمي؟ اضغط هنا

Large bulk band gap is critical for application of the quantum spin Hall (QSH) insulator or two dimensional (2D) topological insulator (TI) in spintronic device operating at room temperature (RT). Based on the first-principles calculations, here we p redict a group of 2D topological insulators BiX/SbX (X = H, F, Cl, and Br) monolayers with extraordinarily large bulk gaps from 0.32 to a record value of 1.08 eV. These giant-gaps are entirely due to the result of strong spin-orbit interaction related to px and py orbitals of Bi/Sb atoms around the two valley K and K of honeycomb lattice, which is different significantly from the one consisted of pz orbital just like in graphene/silicene. The topological characteristic of BiX/SbX monolayers is confirmed by the calculated nontrivial Z2 index and an explicit construction of the low energy effective Hamiltonian in these systems. We show that the honeycomb structures of BiX monolayers remain stable even at a temperature of 600 K. These features make the giant-gap TIs BiX/SbX monolayers an ideal platform to realize many exotic phenomena and fabricate new quantum devices operating at RT. Furthermore, biased BiX/SbX monolayers become a quantum valley Hall insulator, showing valley-selective circular dichroism.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا