ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose a method for representing motion information for video classification and retrieval. We improve upon local descriptor based methods that have been among the most popular and successful models for representing videos. The desired local desc riptors need to satisfy two requirements: 1) to be representative, 2) to be discriminative. Therefore, they need to occur frequently enough in the videos and to be be able to tell the difference among different types of motions. To generate such local descriptors, the video blocks they are based on must contain just the right amount of motion information. However, current state-of-the-art local descriptor methods use video blocks with a single fixed size, which is insufficient for covering actions with varying speeds. In this paper, we introduce a long-short term motion feature that generates descriptors from video blocks with multiple lengths, thus covering motions with large speed variance. Experimental results show that, albeit simple, our model achieves state-of-the-arts results on several benchmark datasets.
Most state-of-the-art action feature extractors involve differential operators, which act as highpass filters and tend to attenuate low frequency action information. This attenuation introduces bias to the resulting features and generates ill-conditi oned feature matrices. The Gaussian Pyramid has been used as a feature enhancing technique that encodes scale-invariant characteristics into the feature space in an attempt to deal with this attenuation. However, at the core of the Gaussian Pyramid is a convolutional smoothing operation, which makes it incapable of generating new features at coarse scales. In order to address this problem, we propose a novel feature enhancing technique called Multi-skIp Feature Stacking (MIFS), which stacks features extracted using a family of differential filters parameterized with multiple time skips and encodes shift-invariance into the frequency space. MIFS compensates for information lost from using differential operators by recapturing information at coarse scales. This recaptured information allows us to match actions at different speeds and ranges of motion. We prove that MIFS enhances the learnability of differential-based features exponentially. The resulting feature matrices from MIFS have much smaller conditional numbers and variances than those from conventional methods. Experimental results show significantly improved performance on challenging action recognition and event detection tasks. Specifically, our method exceeds the state-of-the-arts on Hollywood2, UCF101 and UCF50 datasets and is comparable to state-of-the-arts on HMDB51 and Olympics Sports datasets. MIFS can also be used as a speedup strategy for feature extraction with minimal or no accuracy cost.
Historically, researchers in the field have spent a great deal of effort to create image representations that have scale invariance and retain spatial location information. This paper proposes to encode equivalent temporal characteristics in video re presentations for action recognition. To achieve temporal scale invariance, we develop a method called temporal scale pyramid (TSP). To encode temporal information, we present and compare two methods called temporal extension descriptor (TED) and temporal division pyramid (TDP) . Our purpose is to suggest solutions for matching complex actions that have large variation in velocity and appearance, which is missing from most current action representations. The experimental results on four benchmark datasets, UCF50, HMDB51, Hollywood2 and Olympic Sports, support our approach and significantly outperform state-of-the-art methods. Most noticeably, we achieve 65.0% mean accuracy and 68.2% mean average precision on the challenging HMDB51 and Hollywood2 datasets which constitutes an absolute improvement over the state-of-the-art by 7.8% and 3.9%, respectively.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا