ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent studies suggest that the microbiome can be an important mediator in the effect of a treatment on an outcome. Microbiome data generated from sequencing experiments contain the relative abundance of a large number of microbial taxa with their ev olutionary relationships represented by a phylogenetic tree. The compositional and high-dimensional nature of the microbiome mediator invalidates standard mediation analyses. We propose a phylogeny-based mediation analysis method (PhyloMed) for the microbiome mediator. PhyloMed models the microbiome mediation effect through a cascade of independent local mediation models on the internal nodes of the phylogenetic tree. Each local model captures the mediation effect of a subcomposition at a given taxonomic resolution. The method improves the power of the mediation test by enriching weak and sparse signals across mediating taxa that tend to cluster on the tree. In each local model, we further empower PhyloMed by using a mixture distribution to obtain the subcomposition mediation test p-value, which takes into account the composite nature of the null hypothesis. PhyloMed enables us to test the overall mediation effect of the entire microbial community and pinpoint internal nodes with significant subcomposition mediation effects. Our extensive simulations demonstrate the validity of PhyloMed and its substantial power gain over existing methods. An application to a real study further showcases the advantages of our method.
Data augmentation aims to generate new and synthetic features from the original data, which can identify a better representation of data and improve the performance and generalizability of downstream tasks. However, data augmentation for graph-based models remains a challenging problem, as graph data is more complex than traditional data, which consists of two features with different properties: graph topology and node attributes. In this paper, we study the problem of graph data augmentation for Graph Convolutional Network (GCN) in the context of improving the node embeddings for semi-supervised node classification. Specifically, we conduct cosine similarity based cross operation on the original features to create new graph features, including new node attributes and new graph topologies, and we combine them as new pairwise inputs for specific GCNs. Then, we propose an attentional integrating model to weighted sum the hidden node embeddings encoded by these GCNs into the final node embeddings. We also conduct a disparity constraint on these hidden node embeddings when training to ensure that non-redundant information is captured from different features. Experimental results on five real-world datasets show that our method improves the classification accuracy with a clear margin (+2.5% - +84.2%) than the original GCN model.
The AI City Challenge was created with two goals in mind: (1) pushing the boundaries of research and development in intelligent video analysis for smarter cities use cases, and (2) assessing tasks where the level of performance is enough to cause rea l-world adoption. Transportation is a segment ripe for such adoption. The fifth AI City Challenge attracted 305 participating teams across 38 countries, who leveraged city-scale real traffic data and high-quality synthetic data to compete in five challenge tracks. Track 1 addressed video-based automatic vehicle counting, where the evaluation being conducted on both algorithmic effectiveness and computational efficiency. Track 2 addressed city-scale vehicle re-identification with augmented synthetic data to substantially increase the training set for the task. Track 3 addressed city-scale multi-target multi-camera vehicle tracking. Track 4 addressed traffic anomaly detection. Track 5 was a new track addressing vehicle retrieval using natural language descriptions. The evaluation system shows a general leader board of all submitted results, and a public leader board of results limited to the contest participation rules, where teams are not allowed to use external data in their work. The public leader board shows results more close to real-world situations where annotated data is limited. Results show the promise of AI in Smarter Transportation. State-of-the-art performance for some tasks shows that these technologies are ready for adoption in real-world systems.
In comparison with person re-identification (ReID), which has been widely studied in the research community, vehicle ReID has received less attention. Vehicle ReID is challenging due to 1) high intra-class variability (caused by the dependency of sha pe and appearance on viewpoint), and 2) small inter-class variability (caused by the similarity in shape and appearance between vehicles produced by different manufacturers). To address these challenges, we propose a Pose-Aware Multi-Task Re-Identification (PAMTRI) framework. This approach includes two innovations compared with previous methods. First, it overcomes viewpoint-dependency by explicitly reasoning about vehicle pose and shape via keypoints, heatmaps and segments from pose estimation. Second, it jointly classifies semantic vehicle attributes (colors and types) while performing ReID, through multi-task learning with the embedded pose representations. Since manually labeling images with detailed pose and attribute information is prohibitive, we create a large-scale highly randomized synthetic dataset with automatically annotated vehicle attributes for training. Extensive experiments validate the effectiveness of each proposed component, showing that PAMTRI achieves significant improvement over state-of-the-art on two mainstream vehicle ReID benchmarks: VeRi and CityFlow-ReID. Code and models are available at https://github.com/NVlabs/PAMTRI.
The AI City Challenge was created to accelerate intelligent video analysis that helps make cities smarter and safer. Transportation is one of the largest segments that can benefit from actionable insights derived from data captured by sensors, where computer vision and deep learning have shown promise in achieving large-scale practical deployment. The 4th annual edition of the AI City Challenge has attracted 315 participating teams across 37 countries, who leveraged city-scale real traffic data and high-quality synthetic data to compete in four challenge tracks. Track 1 addressed video-based automatic vehicle counting, where the evaluation is conducted on both algorithmic effectiveness and computational efficiency. Track 2 addressed city-scale vehicle re-identification with augmented synthetic data to substantially increase the training set for the task. Track 3 addressed city-scale multi-target multi-camera vehicle tracking. Track 4 addressed traffic anomaly detection. The evaluation system shows two leader boards, in which a general leader board shows all submitted results, and a public leader board shows results limited to our contest participation rules, that teams are not allowed to use external data in their work. The public leader board shows results more close to real-world situations where annotated data are limited. Our results show promise that AI technology can enable smarter and safer transportation systems.
Urban traffic optimization using traffic cameras as sensors is driving the need to advance state-of-the-art multi-target multi-camera (MTMC) tracking. This work introduces CityFlow, a city-scale traffic camera dataset consisting of more than 3 hours of synchronized HD videos from 40 cameras across 10 intersections, with the longest distance between two simultaneous cameras being 2.5 km. To the best of our knowledge, CityFlow is the largest-scale dataset in terms of spatial coverage and the number of cameras/videos in an urban environment. The dataset contains more than 200K annotated bounding boxes covering a wide range of scenes, viewing angles, vehicle models, and urban traffic flow conditions. Camera geometry and calibration information are provided to aid spatio-temporal analysis. In addition, a subset of the benchmark is made available for the task of image-based vehicle re-identification (ReID). We conducted an extensive experimental evaluation of baselines/state-of-the-art approaches in MTMC tracking, multi-target single-camera (MTSC) tracking, object detection, and image-based ReID on this dataset, analyzing the impact of different network architectures, loss functions, spatio-temporal models and their combinations on task effectiveness. An evaluation server is launched with the release of our benchmark at the 2019 AI City Challenge (https://www.aicitychallenge.org/) that allows researchers to compare the performance of their newest techniques. We expect this dataset to catalyze research in this field, propel the state-of-the-art forward, and lead to deployed traffic optimization(s) in the real world.
Multiple object tracking has been a challenging field, mainly due to noisy detection sets and identity switch caused by occlusion and similar appearance among nearby targets. Previous works rely on appearance models built on individual or several sel ected frames for the comparison of features, but they cannot encode long-term appearance changes caused by pose, viewing angle and lighting conditions. In this work, we propose an adaptive model that learns online a relatively long-term appearance change of each target. The proposed model is compatible with any feature of fixed dimension or their combination, whose learning rates are dynamically controlled by adaptive update and spatial weighting schemes. To handle occlusion and nearby objects sharing similar appearance, we also design cross-matching and re-identification schemes based on the application of the proposed adaptive appearance models. Additionally, the 3D geometry information is effectively incorporated in our formulation for data association. The proposed method outperforms all the state-of-the-art on the MOTChallenge 3D benchmark and achieves real-time computation with only a standard desktop CPU. It has also shown superior performance over the state-of-the-art on the 2D benchmark of MOTChallenge.
This paper is devoted to the two-opposite-facility location games with a penalty whose amount depends on the distance between the two facilities to be opened by an authority. The two facilities are opposite in that one is popular and the other is obn oxious. Every selfish agent in the game wishes to stay close to the popular facility and stay away from the obnoxious one; its utility is measured by the difference between its distances to the obnoxious facility and the popular one. The authority determines the locations of the two facilities on a line segment where all agents are located. Each agent has its location information as private, and is required to report its location to the authority. Using the reported agent locations as input, an algorithmic mechanism run by the authority outputs the locations of the two facilities with an aim to maximize certain social welfare. The sum-type social welfare concerns with the penalized total utility of all agents, for which we design both randomized and deterministic group strategy-proof mechanisms with provable approximation ratios, and establish a lower bound on the approximation ratio of any deterministic strategy-proof mechanism. The bottleneck-type social welfare concerns with the penalized minimum utility among all agents, for which we propose a deterministic group strategy-proof mechanism that ensures optimality.
267 - Zheng Tang , Gaoang Wang , Tao Liu 2017
Tracking of multiple objects is an important application in AI City geared towards solving salient problems related to safety and congestion in an urban environment. Frequent occlusion in traffic surveillance has been a major problem in this research field. In this challenge, we propose a model-based vehicle localization method, which builds a kernel at each patch of the 3D deformable vehicle model and associates them with constraints in 3D space. The proposed method utilizes shape fitness evaluation besides color information to track vehicle objects robustly and efficiently. To build 3D car models in a fully unsupervised manner, we also implement evolutionary camera self-calibration from tracking of walking humans to automatically compute camera parameters. Additionally, the segmented foreground masks which are crucial to 3D modeling and camera self-calibration are adaptively refined by multiple-kernel feedback from tracking. For object detection/classification, the state-of-the-art single shot multibox detector (SSD) is adopted to train and test on the NVIDIA AI City Dataset. To improve the accuracy on categories with only few objects, like bus, bicycle and motorcycle, we also employ the pretrained model from YOLO9000 with multi-scale testing. We combine the results from SSD and YOLO9000 based on ensemble learning. Experiments show that our proposed tracking system outperforms both state-of-the-art of tracking by segmentation and tracking by detection.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا