ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep implicit functions (DIFs), as a kind of 3D shape representation, are becoming more and more popular in the 3D vision community due to their compactness and strong representation power. However, unlike polygon mesh-based templates, it remains a c hallenge to reason dense correspondences or other semantic relationships across shapes represented by DIFs, which limits its applications in texture transfer, shape analysis and so on. To overcome this limitation and also make DIFs more interpretable, we propose Deep Implicit Templates, a new 3D shape representation that supports explicit correspondence reasoning in deep implicit representations. Our key idea is to formulate DIFs as conditional deformations of a template implicit function. To this end, we propose Spatial Warping LSTM, which decomposes the conditional spatial transformation into multiple affine transformations and guarantees generalization capability. Moreover, the training loss is carefully designed in order to achieve high reconstruction accuracy while learning a plausible template with accurate correspondences in an unsupervised manner. Experiments show that our method can not only learn a common implicit template for a collection of shapes, but also establish dense correspondences across all the shapes simultaneously without any supervision.
125 - Zerong Zheng , Tao Yu , Yebin Liu 2020
Modeling 3D humans accurately and robustly from a single image is very challenging, and the key for such an ill-posed problem is the 3D representation of the human models. To overcome the limitations of regular 3D representations, we propose Parametr ic Model-Conditioned Implicit Representation (PaMIR), which combines the parametric body model with the free-form deep implicit function. In our PaMIR-based reconstruction framework, a novel deep neural network is proposed to regularize the free-form deep implicit function using the semantic features of the parametric model, which improves the generalization ability under the scenarios of challenging poses and various clothing topologies. Moreover, a novel depth-ambiguity-aware training loss is further integrated to resolve depth ambiguities and enable successful surface detail reconstruction with imperfect body reference. Finally, we propose a body reference optimization method to improve the parametric model estimation accuracy and to enhance the consistency between the parametric model and the implicit function. With the PaMIR representation, our framework can be easily extended to multi-image input scenarios without the need of multi-camera calibration and pose synchronization. Experimental results demonstrate that our method achieves state-of-the-art performance for image-based 3D human reconstruction in the cases of challenging poses and clothing types.
386 - Zerong Zheng , Tao Yu , Yixuan Wei 2019
We propose DeepHuman, an image-guided volume-to-volume translation CNN for 3D human reconstruction from a single RGB image. To reduce the ambiguities associated with the surface geometry reconstruction, even for the reconstruction of invisible areas, we propose and leverage a dense semantic representation generated from SMPL model as an additional input. One key feature of our network is that it fuses different scales of image features into the 3D space through volumetric feature transformation, which helps to recover accurate surface geometry. The visible surface details are further refined through a normal refinement network, which can be concatenated with the volume generation network using our proposed volumetric normal projection layer. We also contribute THuman, a 3D real-world human model dataset containing about 7000 models. The network is trained using training data generated from the dataset. Overall, due to the specific design of our network and the diversity in our dataset, our method enables 3D human model estimation given only a single image and outperforms state-of-the-art approaches.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا