ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose a new segmentation model combining common regularization energies, e.g. Markov Random Field (MRF) potentials, and standard pairwise clustering criteria like Normalized Cut (NC), average association (AA), etc. These clustering and regulariz ation models are widely used in machine learning and computer vision, but they were not combined before due to significant differences in the corresponding optimization, e.g. spectral relaxation and combinatorial max-flow techniques. On the one hand, we show that many common applications using MRF segmentation energies can benefit from a high-order NC term, e.g. enforcing balanced clustering of arbitrary high-dimensional image features combining color, texture, location, depth, motion, etc. On the other hand, standard clustering applications can benefit from an inclusion of common pairwise or higher-order MRF constraints, e.g. edge alignment, bin-consistency, label cost, etc. To address joint energies like NC+MRF, we propose efficient Kernel Cut algorithms based on bound optimization. While focusing on graph cut and move-making techniques, our new unary (linear) kernel and spectral bound formulations for common pairwise clustering criteria allow to integrate them with any regularization functionals with existing discrete or continuous solvers.
Curvature has received increased attention as an important alternative to length based regularization in computer vision. In contrast to length, it preserves elongated structures and fine details. Existing approaches are either inefficient, or have l ow angular resolution and yield results with strong block artifacts. We derive a new model for computing squared curvature based on integral geometry. The model counts responses of straight line triple cliques. The corresponding energy decomposes into submodular and supermodular pairwise potentials. We show that this energy can be efficiently minimized even for high angular resolutions using the trust region framework. Our results confirm that we obtain accurate and visually pleasing solutions without strong artifacts at reasonable run times.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا