ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of the vector-type four-quark interaction on QCD phase structure are investigated in the imaginary chemical potential region, by using the Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model with the extended Z3 symmetry. In the course to this end, we clarify analytically the Roberge-Weiss periodicity and symmetry properties of various quantities under the existence of a vector-type four-quark interaction. In the imaginary chemical potential region, the chiral condensate and the quark number density are sensitive to the strength of the interaction. Based on this result, we propose a possibility to determine the strength of the vector-type interaction, which largely affects QCD phase structure in the real chemical potential region, by comparing the results of lattice simulations and effective model calculations in the imaginary chemical potential region.
Phase transitions in the imaginary chemical potential region are studied by the Polyakov loop extended Nambu-Jona-Lasinio (PNJL) model that possesses the extended Z3 symmetry. The extended Z3 invariant quantities such as the partition function, the c hiral condensate and the modifed Polyakov loop have the Roberge-Weiss (RW) periodicity. There appear four types of phase transitions; deconfinement, chiral, Polykov-loop RW and chiral RW transitions. The orders of the chiral and deconfinement transitions depend on the presence or absence of current quark mass, but those of the Polykov-loop RW and chiral RW transitions do not. The scalar-type eightquark interaction newly added in the model makes the chiral transition line shift to the vicinity of the deconfiment transition line.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا