ترغب بنشر مسار تعليمي؟ اضغط هنا

We present laboratory measurements of the interaction between thermoelectric currents and turbulent magnetoconvection. In a cylindrical volume of liquid gallium heated from below and cooled from above and subject to a vertical magnetic field, it is f ound that the large scale circulation (LSC) can undergo a slow axial precession. Our experiments demonstrate that this LSC precession occurs only when electrically conducting boundary conditions are employed, and that the precession direction reverses when the axial magnetic field direction is flipped. A novel thermoelectric magnetoconvection (TEMC) model is developed that successfully predicts the zeroth-order magnetoprecession dynamics. Our TEMC magnetoprecession model hinges on thermoelectric current loops at the top and bottom boundaries, which create Lorentz forces that generate horizontal torques on the overturning large-scale circulatory flow. The thermoelectric torques in our model act to drive a precessional motion of the LSC. This model yields precession frequencies predictions that are in good agreement with the experimental observations. We postulate that thermoelectric effects in convective flows, long argued to be relevant in liquid metal heat transfer and mixing processes, may also have applications in planetary interior magnetohydrodynamics.
Microcapsules are a key class of microscale materials with applications in areas ranging from personal care to biomedicine, and with increasing potential to act as extracellular matrix (ECM) models of hollow organs or tissues. Such capsules are conve ntionally generated from non-ECM materials including synthetic polymers. Here, we fabricated robust microcapsules with controllable shell thickness from physically- and enzymatically-crosslinked gelatin and achieved a core-shell architecture by exploiting a liquid-liquid phase separated aqueous dispersed phase system in a one-step microfluidic process. Microfluidic mechanical testing revealed that the mechanical robustness of thicker-shell capsules could be controlled through modulation of the shell thickness. Furthermore, the microcapsules demonstrated environmentally-responsive deformation, including buckling by osmosis and external mechanical forces. A sequential release of cargo species was obtained through the degradation of the capsules. Stability measurements showed the capsules were stable at 37 {deg}C for more than two weeks. Finally, all-aqueous liquid-liquid phase separated and multiphase liquid-liquid phase separated systems were generated with the gel-sol transition of microgel precursors. These smart capsules are promising models of hollow biostructures, microscale drug carriers, and building blocks or compartments for active soft materials and robots.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا