ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the hybrid exotic meson with $J^{PC}=1^{-+}$ within the framework of an AdS/QCD model. Introducing a holographic field dual to the operator for hybrid exotic meson, we obtain the eigen-value equation for its mass. Fixing all free param eters by QCD observables such as the $rho$-meson mass, we predict the masses of the hybrid exotic meson. The results turn out to be $1476 mathrm{MeV}$ for the ground state, and $2611 mathrm{MeV}$ for the first excited one. Being compared with the existing experimental data for the $pi_1(1400)$, which is known to be $m_{pi_1} = 1351pm30 mathrm{MeV}$, the present result seems to be qualitative in agreement with it. We also predict the decay constant of $pi_1$(1400): $F_{pi_1}= 10.6$ MeV.
We study the quark number susceptibility, an indicator of QCD phase transition, in the hard wall and soft wall models of hQCD. We find that the susceptibilities in both models are the same, jumping up at the deconfinement phase transition temperature . We also find that the diffusion constant in the soft wall model is enhanced compared to the one in the hard wall model.
We investigate the quark-gluon mixed condensate based on an AdS/QCD model. Introducing a holographic field dual to the operator for the quark-gluon mixed condensate, we obtain the corresponding classical equation of motion. Taking the mixed condensat e as an additional free parameter, we show that the present scheme reproduces very well experimental data. A fixed value of the mixed condensate is in good agreement with that of the QCD sum rules.
Chiral symmetry is an essential concept in understanding QCD at low energy. We treat the chiral condensate, which measures the spontaneous breaking of chiral symmetry, as a free parameter to investigate the effect of partially restored chiral symmetr y on the physical quantities in the frame work of an AdS/QCD model. We observe an interesting scaling behavior among the nucleon mass, pion decay constant and chiral condensate. We propose a phenomenological way to introduce the temperature dependence of a physical quantity in the AdS/QCD model with the thermal AdS metric.
We study the physics with finite nuclear density in the framework of AdS/QCD with holographic baryon field included. Based on a mean field type approach, we introduce the nucleon density as a bi-fermion condensate of the lowest mode of the baryon fie ld and calculate the density dependence of the chiral condensate and the nucleon mass. We observe that the chiral condensate as well as the mass of nucleon decrease with increasing nuclear density. We also consider the mass splitting of charged vector mesons in iso-spin asymmetric nuclear matter.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا