ترغب بنشر مسار تعليمي؟ اضغط هنا

193 - YoungJu Choie 2021
Generalizing a result of cite{Z1991, CPZ} about elliptic modular forms, we give a closed formula for the sum of all Hilbert Hecke eigenforms over a totally real number field with strict class number $1$, multiplied by their period polynomials, as a single product of the Kronecker series.
A generalized Riemann hypothesis states that all zeros of the completed Hecke $L$-function $L^*(f,s)$ of a normalized Hecke eigenform $f$ on the full modular group should lie on the vertical line $Re(s)=frac{k}{2}.$ It was shown by Kohnen that there exists a Hecke eigenform $f$ of weight $k$ such that $L^*(f,s) eq 0$ for sufficiently large $k$ and any point on the line segments $Im(s)=t_0, frac{k-1}{2} < Re(s) < frac{k}{2}-epsilon, frac{k }{2}+epsilon < Re(s) < frac{k+1}{2},$ for any given real number $t_0$ and a positive real number $epsilon.$ This paper concerns the non-vanishing of the product $L^*(f,s)L^*(f,w)$ $(s,win mathbb{C})$ on average.
We extend to positive real weights Haberlands formula giving a cohomological description of the Petersson scalar product of modular cusp forms of positive even weight. This relation is based on the cup product of an Eichler cocycle and a Knopp cocycl e. We also consider the cup product of two Eichler cocycles attached to modular forms. In the classical context of integral weights at least $2$ this cup product is uninteresting. We show evidence that for real weights this cup product may very well be non-trivial. We approach the question whether the cup product is a non-trivial coinvariant by duality with a space of entire modular forms. Under suitable conditions on the weights this leads to an explicit triple integral involving three modular forms. We use this representation to study the cup product numerically.
We investigate non-vanishing properties of $L(f,s)$ on the real line, when $f$ is a Hecke eigenform of half-integral weight $k+{1over 2}$ on $Gamma_0(4).$
This work gives a version of the Eichler-Shimura isomorphism with a non-abelian $H^1$ in group cohomology. Manin has given a map from vectors of cusp forms to a noncommutative cohomology set by means of iterated integrals. We show Manins map is injec tive but far from surjective. By extending Manins map we are able to construct a bijective map and remarkably this establishes the existence of a non-abelian version of the Eichler-Shimura map.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا