ترغب بنشر مسار تعليمي؟ اضغط هنا

We develop a simplified light source at 461 nm for laser cooling of Sr without frequency-doubling crystals but with blue laser diodes. An anti-reflection coated blue laser diode in an external cavity (Littrow) configuration provides an output power o f 40 mW at 461 nm. Another blue laser diode is used to amplify the laser power up to 110 mW by injection locking. For frequency stabilization, we demonstrate modulation-free polarization spectroscopy of Sr in a hollow cathode lamp. The simplification of the laser system achieved in this work is of great importance for the construction of transportable optical lattice clocks.
We present a novel and simple method of stabilizing the laser phase and frequency by polarization spectroscopy of an atomic vapor. In analogy to the Pound-Drever-Hall method, which uses a cavity as a memory of the laser phase, this method uses atomic coherence (dipole oscillations) as a phase memory of the transmitting laser field. A preliminary experiment using a distributed feedback laser diode and a rubidium vapor cell demonstrates a shot-noise-limited laser linewidth reduction (from 2 MHz to 20 kHz). This method would improve the performance of gas-cell-based optical atomic clocks and magnetometers and facilitate laser-cooling experiments using narrow transitions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا