ترغب بنشر مسار تعليمي؟ اضغط هنا

108 - Y. Fujiwara Kyoto 2008
We reexamine the spin-orbit splitting of 9 Lambda Be excited states in terms of the SU_6 quark-model baryon-baryon interaction. The previous folding procedure to generate the Lambda alpha spin-orbit potential from the quark-model Lambda N LS interact ion kernel predicted three to five times larger values for Delta E_{ell s}=E_x(3/2^+)-E_x(5/2^+) in the model FSS and fss2. This time, we calculate Lambda alpha LS Born kernel, starting from the LS components of the nuclear-matter G-matrix for the Lambda hyperon. This framework makes it possible to take full account of an important P-wave Lambda N - Sigma N coupling through the antisymmetric LS^{(-)} force involved in the Fermi-Breit interaction. We find that the experimental value, Delta E^{exp}_{ell s}=43 pm 5 keV, is reproduced by the quark-model G-matrix LS interaction with a Fermi-momentum around k_F=1.0 fm^{-1}, when the model FSS is used in the energy-independent renormalized RGM formalism.
105 - Y. Fujiwara Kyoto 2008
We calculate n alpha phase-shifts and scattering observables in the resonating-group method, using the nuclear-matter G-matrix of an SU_6 quark-model NN interaction. The G-matrix is generated in the recent energy-independent procedure of the quark-mo del NN interaction with the continuous prescription for intermediate spectra, by assuming an appropriate Fermi momentum k_F=1.2 fm^-1. The n alpha RGM interaction kernels are evaluated with explicit treatments of the nonlocality and momentum dependence of partial-wave G-matrix components. The momentum dependence of the G-matrix components is different for each of the nucleon-exchange and interaction types. Without introducing any artificial parameters except for k_F, the central and spin-orbit components of the n alpha Born kernel are found to have reasonable strengths under the assumption of a rigid translationally invariant shell-model wave function of the alpha-cluster. The characteristic behaviors of three different exchange terms, corresponding to knockout, heavy-particle pickup and nucleon-rearrangement processes, are essentially the same between the case of previous local effective NN forces and the case of nonlocal G-matrix NN interactions.
185 - Y. Fujiwara 2007
Previously we calculated the binding energies of the triton and hypertriton, using an SU_6 quark-model interaction derived from a resonating-group method of two baryon clusters. In contrast to the previous calculations employing the energy-dependent interaction kernel, we present new results using a renormalized interaction, which is now energy independent and reserves all the two-baryon data. The new binding energies are slightly smaller than the previous values. In particular the triton binding energy turns out to be 8.14 MeV with a charge-dependence correction of the two-nucleon force, 190 keV, being included. This indicates that about 350 keV is left for the energy which is to be accounted for by three-body forces.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا