ترغب بنشر مسار تعليمي؟ اضغط هنا

We analyze the redshift- and luminosity-dependent sizes of dropout galaxy candidates in the redshift range z~7-12 using deep images from the UDF12 campaign, data which offers two distinct advantages over that used in earlier work. Firstly, we utilize the increased S/N ratio offered by the UDF12 imaging to provide improved size measurements for known galaxies at z=6.5-8 in the HUDF. Specifically, we stack the new deep F140W image with the existing F125W data in order to provide improved measurements of the half-light radii of z-dropouts. Similarly we stack this image with the new deep UDF12 F160W image to obtain new size measurements for a sample of Y-dropouts. Secondly, because the UDF12 data have allowed the construction of the first robust galaxy sample in the HUDF at z>8, we have been able to extend the measurement of average galaxy size out to significantly higher redshifts. Restricting our size measurements to sources which are now detected at >15sigma, we confirm earlier indications that the average half-light radii of z~7-12 galaxies are extremely small, 0.3-0.4 kpc, comparable to the sizes of giant molecular associations in local star-forming galaxies. We also confirm that there is a clear trend of decreasing half-light radius with increasing redshift, and provide the first evidence that this trend continues beyond z~8. Modeling the evolution of the average half-light radius as a power-law (1+z)^s, we obtain a best-fit index of s=-1.28+/-0.13 over the redshift range z~4-12, mid-way between the physically expected evolution for baryons embedded in dark halos of constant mass (s=-1) and constant velocity (s=-1.5). A clear size-luminosity relation, such as that found at lower redshift, is also evident in both our z- and Y-dropout sample. This relation can be interpreted in terms of a constant surface density of star formation over a range in luminosity of 0.05-1.0L*_z=3.(abridged)
We investigate the stellar populations of Lyman alpha emitters (LAEs) at z=5.7 and 6.6 in a 0.65 deg^2 sky of the Subaru/XMM-Newton Deep Survey (SXDS) Field, using deep images taken with Subaru/Suprime-Cam, UKIRT/WFCAM, and Spitzer/IRAC. We produce s tacked multiband images at each redshift from 165 (z=5.7) and 91 (z=6.6) IRAC-undetected objects, to derive typical spectral energy distributions (SEDs) of z~6-7 LAEs for the first time. The stacked LAEs have as blue UV continua as the HST/WFC3 z-dropout galaxies of similar Muv, with a spectral slope beta ~ -3, but at the same time they have red UV-to-optical colors with detection in the 3.6um band. Using SED fitting we find that the stacked LAEs have low stellar masses of ~(3-10)*10^7 Msun, very young ages of ~1-3 Myr, negligible dust extinction, and strong nebular emission from the ionized interstellar medium, although the z=6.6 object is fitted similarly well with high-mass models without nebular emission; inclusion of nebular emission reproduces the red UV-to-optical color while keeping the UV color sufficiently blue. We infer that typical LAEs at z~6-7 are building blocks of galaxies seen at lower redshifts. We find a tentative decrease in the Lyman alpha escape fraction from z=5.7 to 6.6, which may imply an increase in the intergalactic medium neutral fraction. From the minimum contribution of nebular emission required to fit the observed SEDs, we place an upper limit on the escape fraction of ionizing photons to be f_esc^ion~0.6 at z=5.7 and ~0.9 at z=6.6. We also compare the stellar populations of our LAEs with that of stacked HST/WFC3 z-dropout galaxies.
We investigate the stellar populations of Lyman alpha emitters (LAEs) at z=3.1 and 3.7 in 0.65 deg^2 of the Subaru/XMM-Newton Deep Field, based on rest-frame UV-to-optical photometry obtained from the Subaru/XMM-Newton Deep Survey, the UKIDSS/Ultra D eep Survey, and the Spitzer legacy survey of the UKIDSS/UDS. Among a total of 302 LAEs (224 for z=3.1 and 78 for z=3.7), only 11 are detected in the K band, i.e., brighter than K(3sigma)=24.1 mag. Eight of the 11 K-detected LAEs are spectroscopically confirmed. We find that the K-undetected objects, which should closely represent the LAE population as a whole, have low stellar masses of ~ 10^8 - 10^8.5 Msun, modest SFRs of 1 - 100 Msun yr^-1, and modest dust extinction of E(B-V) < 0.2. The K-detected objects are massive, Mstar ~ 10^9 - 10^10.5 Msun, and have significant dust extinction with a median of E(B-V) ~= 0.3. Four K-detected objects with the reddest spectral energy distributions, two of which are spectroscopically confirmed, are heavily obscured with E(B-V) ~ 0.65, and their continua resemble those of some local ULIRGs. Interestingly, they have large Lyman alpha equivalent widths ~= 70 - 250 A. If these four are excluded, our sample has a weak anti-correlation between EW(Lya) and Mstar. We compare the stellar masses and the specific star formation rates (sSFR) of LAEs with those of Lyman-break galaxies, distant red galaxies, submillimetre galaxies, and I- or K-selected galaxies with z_phot ~ 3. We find that the LAE population is the least massive among all the galaxy populations in question, but with relatively high sSFRs, while NIR-detected LAEs have Mstar and sSFR similar to LBGs. Our reddest four LAEs have very high sSFRs in spite of large Mstar, thus occupying a unique region in the Mstar versus sSFR space. (abridged)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا