ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose a quantum fitting scheme to estimate the magnetic field gradient with $N$-atom spins preparing in W state, which attains the Heisenberg-scaling accuracy. Our scheme combines the quantum multi-parameter estimation and the least square linea r fitting method to achieve the quantum Cram{e}r-Rao bound (QCRB). We show that the estimated quantity achieves the Heisenberg-scaling accuracy. In single parameter estimation with assumption that the magnetic field is strictly linear, two optimal measurements can achieve the identical Heisenberg-scaling accuracy. Proper interpretation of the super-Heisenberg-scaling accuracy is presented. The scheme of quantum metrology combined with data fitting provides a new method in fast high precision measurements.
We propose a quantum method to judge whether two spatially separated clocks have been synchronized within a specific accuracy $sigma$. If the measurement result of the experiment is obviously a nonzero value, the time difference between two clocks is smaller than $sigma$; otherwise the difference is beyond $sigma$. On sharing the 2$N$-qubit bipartite maximally entangled state in this scheme, the accuracy of judgement can be enhanced to $sigmasim{pi}/{(omega(N+1))}$. This criterion is consistent with Heisenberg scaling that can be considered as beating standard quantum limit, moreover, the unbiased estimation condition is not necessary.
We generalize the geometrical model of transformation optics to Rieman-Cartan space with torsion by introducing topological defects in physical space. By relaxing the integrable condition, we show explicitly that the generalized equivalent medium are bi-anisotropic where the magnetoelectric coupling parameters emergent as the dislocation density. We also show the generation of orbital angular momentum of light. Our theory may open intriguing venues for controlling the vectorial degree of freedom of light with metamaterials.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا