ترغب بنشر مسار تعليمي؟ اضغط هنا

We present high angular and spectral resolution HI 21~cm line observations toward the cometary-shaped compact HII region G213.880-11.837 in the GGD~14 complex.The kinematics and morphology of the photodissociated region, traced by the HI line emissio n, reveal that the neutral gas is part of an expanding flow. The kinematics of the HI gas along the major axis of G213.880-11.837 shows that the emission is very extended toward the SE direction, reaching LSR radial velocities in the tail of about 14 km/s. The ambient LSR radial velocity of the molecular gas is 11.5 km/s, which suggests a champagne flow of the HI gas. This is the second (after G111.61+0.37) cometary HII/HI region known.
Using the Very Large Array (VLA) at 3.6~cm we identify four new compact radio sources in the vicinity of the cometary HII region G78.4+2.6 (VLA~1). The four compact radio sources (named VLA~2 to VLA~5), have near-infrared counterparts, as seen in the 3.6 $mu$m Spitzer image. One of them (VLA~5) clearly shows evidence of radio variability in a timescale of hours. We explore the possibility that these radio sources are associated with pre-main sequence (PMS) stars in the vicinity of the UC HII region G78.4+2.6. Our results favor the smaller distance value of 1.7 kpc for G78.4+2.6. In addition to the detection of the radio sources in the vicinity of G78.4+2.6, we detected another group of five sources which appear located about 3 to the northwest of the HII region. Some of them exhibit extended emission.
184 - Y. Gomez , D. Tafoya , G. Anglada 2009
K 3-35 is a planetary nebula (PN) where H2O maser emission has been detected, suggesting that it departed from the proto-PNe phase only some decades ago. Interferometric VLA observations of the OH 18 cm transitions in K~3-35 are presented.OH maser em ission is detected in all four ground state lines (1612, 1665, 1667, and 1720 MHz). All the masers appear blueshifted with respect to the systemic velocity of the nebula and they have different spatial and kinematic distributions.The OH 1665 and 1720 MHz masers appear spatially coincident with the core of the nebula, while the OH 1612 and 1667 MHz ones exhibit a more extended distribution. We suggest that the 1665 and 1720 masers arise from a region close to the central star, possibly in a torus, while the 1612 and 1667 lines originate mainly from the extended northern lobe of the outflow. It is worth noting that the location and velocity of the OH 1720 MHz maser emission are very similar to those of the H2O masers (coinciding within 0.1 and ~2 km/s, respectively). We suggest that the pumping mechanism in the H2O masers could be produced by the same shock that is exciting the OH 1720 MHz transition. A high degree of circular polarization (>50%) was found to be present in some features of the 1612, 1665, and 1720 MHz emission.For the 1665 MHz transition at ~ +18 km/s the emission with left and right circular polarizations (LCP and RCP) coincide spatially within a region of ~0.03 in diameter.Assuming that these RCP and LCP 1665 features come from a Zeeman pair, we estimate a magnetic field of ~0.9 mG within 150 AU from the 1.3 cm continuum peak. This value is in agreement with a solar-type magnetic field associated with evolved stars.
94 - Y. Gomez 2008
Stars at the top of the asymptotic giant branch (AGB) can exhibit maser emission from molecules like SiO, H2O and OH. As the star evolves to the planetary nebula phase, mass-loss stops and ionization of the envelope begins, making the masers disappea r progressively. The OH masers in PNe can be present in the envelope for periods of ~1000 years but the water masers can survive only hundreds of years. Then, water maser emission is not expected in planetary nebulae! We discuss the unambiguous detection of water maser emission in two planetary nebulae: K 3-35 and IRAS 17347-3139.
The bipolar morphology of the planetary nebula (PN) K 3-35 observed in radio-continuum images was modelled with 3D hydrodynamic simulations with the adaptive grid code yguazu-a. We find that the observed morphology of this PN can be reproduced consid ering a precessing jet evolving in a dense AGB circumstellar medium, given by a mass loss rate dot{M}_{csm}=5x10^{-5}M_{odot}/yr and a terminal velocity v_{w}=10 km/s. Synthetic thermal radio-continuum maps were generated from numerical results for several frequencies. Comparing the maps and the total fluxes obtained from the simulations with the observational results, we find that a model of precessing dense jets, where each jet injects material into the surrounding CSM at a rate dot{M}_j=2.8x10^{-4} {M_{odot}/yr (equivalent to a density of 8x10^{4} {cm}^{-3}, a velocity of 1500 km/s, a precession period of 100 yr, and a semi-aperture precession angle of 20 degrees agrees well with the observations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا