ترغب بنشر مسار تعليمي؟ اضغط هنا

Using two HST/ACS data-sets that are separated by ~2 years has allowed us to derive the relative proper-motion for the Sagittarius dwarf irregular (SagDIG) and reduce the heavy foreground Galactic contamination. The proper-motion decontaminated SagDI G catalog provides a much clearer view of the young red-supergiant and intermediate-age asymptotic giant branch populations. We report the identification of 3 Milky Way carbon-rich dwarf stars, probably belonging to the thin disk, and pointing to the high incidence of this class at low Galactic latitudes. A sub-group of 4 oxygen-rich candidate stars depicts a faint, red extension of the well-defined SagDIG carbon-rich sequence. The origin of these oxygen-rich candidate stars remains unclear, reflecting the uncertainty in the ratio of carbon/oxygen rich stars. SagDIG is also a gas-rich galaxy characterized by a single large cavity in the gas disk (HI-hole), which is offset by ~360 pc from the optical centre of the galaxy. We nonetheless investigate the stellar feedback hypothesis by comparing the proper-motion cleaned stellar populations within the HI-hole with appropriately selected comparison regions, having higher HI densities external to the hole. The comparison shows no significant differences. In particular, the centre of the HI-hole (and the comparison regions) lack stellar populations younger than ~400 Myr, which are otherwise abundant in the inner body of the galaxy. We conclude that there is no convincing evidence that the SagDIG HI-hole is the result of stellar feedback, and that gravitational and thermal instabilities in the gas are the most likely mechanism for its formation.
We employ the recently installed near infrared Multi-Conjugate Adaptive optics demonstrator (MAD) to determine basic properties of a newly identified, old and distant, Galactic open cluster (FSR1415). The MAD facility remarkably approaches the diffra ction limit, reaching a resolution of 0.07 arcsec (in K), that is also uniform in a field of ~1.8 arcmin in diameter. The MAD facility provides photometry that is 50% complete at K~19. This corresponds to about ~2.5 mag below the cluster main sequence turn-off. This high quality data set allows us to derive an accurate heliocentric distance of ~8.6 kpc, a metallicity close to solar, and an age of ~2.5 Gyr. On the other hand, the deepness of the data allow us to reconstruct (completeness-corrected) mass functions indicating a relatively massive cluster, with a flat core MF. The VLT/MAD capabilities will therefore provide fundamental data in identifying/analyzing other faint and distant open clusters in the Galaxy III and IV quadrants.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا