ترغب بنشر مسار تعليمي؟ اضغط هنا

Utilizing spin-polarized scanning tunneling microscopy and spectroscopy, we found coexistence of perpendicularly and in-plane magnetized cobalt nanoscale islands on the Ag(111) surface, and the relationship between the moire corrugation amplitude and the magnetization direction of the islands; the islands with the stronger moire corrugation show the perpendicular magnetization, and the ones with the weaker moire corrugation do the in-plane. Density functional theory calculations reproduce the relationship and explain the differences between the two types of the islands with an fcc stacking fault in the intrinsic hcp stacking of cobalt.
We have measured the specific heat of the S = 1/2 alternating Heisenberg antiferromagnetic chain compound pentafluorophenyl nitronyl nitroxide in magnetic fields using a single crystal and powder. A sharp peak due to field-induced magnetic ordering ( FIMO) is observed in both samples. The H-T phase boundary of the FIMO of the single crystal is symmetric with respect to the central field of the gapless field region HC1 < H < HC2, whereas it is distorted for the powder whose ordering temperatures are lower. An analysis employing calculations based on the finite temperature density matrix renormalization group indicates the possibility of novel incommensurate ordering due to frustration in the powder around the central field.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا