ترغب بنشر مسار تعليمي؟ اضغط هنا

The generation of infrared (IR) radiation and the observed IR intensity distribution at wavelengths of 8, 24, and 100 micron in the ionized hydrogen region around a young, massive star is investigated. The evolution of the HII region is treated using a self-consistent chemical-dynamical model in which three dust populations are included -- large silicate grains, small graphite grains, and polycyclic, aromatic hydrocarbons (PAHs). A radiative transfer model taking into account stochastic heating of small grains and macromolecules is used to model the IR spectral energy distribution. The computational results are compared with Spitzer and Herschel observations of the RCW 120 nebula. The contributions of collisions with gas particles and the radiation field of the star to stochastic heating of small grains are investigated. It is shown that a model with a homogeneous PAH content cannot reproduce the ring-like IR-intensity distribution at 8 micron. A model in which PAHs are destroyed in the ionized region provides a means to explain this intensity distribution. This model is in agreement with observations for realistic characteristic destruction times for the PAHs.
Stochastic heating of small grains is often mentioned as a primary cause of large infrared (IR) fluxes from star-forming galaxies, e.g. at 24mu m. If the mechanism does work at a galaxy-wide scale, it should show up at smaller scales as well. We calc ulate temperature probability density distributions within a model protostellar core for four dust components: large silicate and graphite grains, small graphite grains, and polycyclic aromatic hydrocarbon particles. The corresponding spectral energy distributions are calculated and compared with observations of a representative infrared dark cloud core. We show that stochastic heating, induced by the standard interstellar radiation field, cannot explain high mid-IR emission toward the centre of the core. In order to reproduce the observed emission from the core projected centre, in particular, at 24mu m, we need to increase the ambient radiation field by a factor of about 70. However, the model with enhanced radiation field predicts even higher intensities at the core periphery, giving it a ring-like appearance, that is not observed. We discuss possible implications of this finding and also discuss a role of other non-radiative dust heating processes.
A one-dimensional method for reconstructing the structure of prestellar and protostellar clouds is presented. The method is based on radiative transfer computations and a comparison of theoretical and observed intensity distributions at both millimet er and infrared wavelengths. The radiative transfer of dust emission is modeled for specified parameters of the density distribution, central star, and external background, and the theoretical distribution of the dust temperature inside the cloud is determined. The intensity distributions at millimeter and IR wavelengths are computed and quantitatively compared with observational data. The best-fit model parameters are determined using a genetic minimization algorithm, which makes it possible to reveal the ranges of parameter degeneracy as well. The method is illustrated by modeling the structure of the two infrared dark clouds IRDC-320.27+029 (P2) and IRDC-321.73+005 (P2). The derived density and temperature distributions can be used to model the chemical structure and spectral maps in molecular lines.
We investigate general aspects of molecular line formation under conditions which are typical of prestellar cores. Focusing on simple linear molecules, we study formation of their rotational lines by radiative transfer simulations. We present a therm alization diagram to show the effects of collisions and radiation on the level excitation. We construct a detailed scheme (contribution chart) to illustrate the formation of emission line profiles. This chart can be used as an efficient tool to identify which parts of the cloud contribute to a specific line profile. We show how molecular line characteristics for uniform model clouds depend on hydrogen density, molecular column density, and kinetic temperature. The results are presented in a 2D plane to illustrate cooperative effects of the physical factors. We also use a core model with a non-uniform density distribution and chemical stratification to study the effects of cloud contraction and rotation on spectral line maps. We discuss the main issues that should be taken into account when dealing with interpretation and simulation of observed molecular lines.
The process of turbulent radial mixing in protoplanetary disks has strong relevance to the analysis of the spatial distribution of crystalline dust species in disks around young stars and to studies of the composition of meteorites and comets in our own solar system. A debate has gone on in the recent literature on the ratio of the effective viscosity coefficient $ u$ (responsible for accretion) to the turbulent diffusion coefficient $D$ (responsible for mixing). Numerical magneto-hydrodynamic simulations have yielded values between $ u/Dsimeq 10$ (Carballido, Stone & Pringle, 2005) and $ u/Dsimeq 0.85$ (Johansen & Klahr, 2005}). Here we present two analytic arguments for the ratio $ u/D=1/3$ which are based on elegant, though strongly simplified assumptions. We argue that whichever of these numbers comes closest to reality may be determined {em observationally} by using spatially resolved mid-infrared measurements of protoplanetary disks around Herbig stars. If meridional flows are present in the disk, then we expect less abundance of crystalline dust in the surface layers, a prediction which can likewise be observationally tested with mid-infrared interferometers.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا