ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a physically-based absorption-line model for the spectroscopic study of the intergalactic medium (IGM). This model adopts results from Cloudy simulations and theoretical calculations by Gnat and Sternberg (2007) to examine the resulting ob servational signatures of the absorbing gas with the following ionization scenarios: collisional ionization equilibrium (CIE), photoionization equilibrium, hybrid (photo- plus collisional ionization), and non-equilibrium cooling. As a demonstration, we apply this model to new observations made with the Cosmic Origins Spectrograph aboard the Hubble Space Telescope of the IGM absorbers at z~0.1877 along the 1ES 1553+113 sight line. We identify Ly alpha, C III, O VI, and N V absorption lines with two distinct velocity components (blue at z_b=0.18757; red at z_r=0.18772) separated by Delta(cz)/(1+z)~38 km/s. Joint analyses of these lines indicate that none of the examined ionization scenarios can be applied with confidence to the blue velocity component, although photoionization seems to play a dominant role. For the red component, CIE can be ruled out, but pure photoionization and hybrid scenarios (with T<1.3E5 K) are more acceptable. The constrained ranges of hydrogen density and metallicity of the absorbing gas are n_H=(1.9-2.3)E-5 cm^-3 and Z=(0.43-0.67)Z_solar. These constraints indicate OVI and HI ionization fractions, f_OVI=0.10-0.15 and f_HI=(3.2-5.1)E-5, with total hydrogen column density N_H=(0.7-1.2)E18 cm^-2. This demonstration shows that joint analysis of multiple absorption lines can constrain the ionization state of an absorber, and results used to estimate the baryonic matter contained in the absorber.
323 - Y. Yao , T. M. Tripp , Q. D. Wang 2009
The observed intergalactic OVI absorbers at z>0 have been regarded as a significant reservoir of the ``missing baryons. However, to fully understand how these absorbers contribute to the baryon inventory, it is crucial to determine whether the system s are collisionally ionized or photoionized (or both). Using the identified intergalactic OVI absorbers as tracers, we search for the corresponding X-ray absorption lines, which are useful for finding the missing baryons and for revealing the nature of the OVI absorbers. Stacking the Chandra grating spectra along six AGN sight lines, we obtain three spectra with signal-to-noise ratios of 32, 28, and 10 per 12.5 mA spectral bin around the expected OVII Kalpha wavelength. These spectra correspond to OVI absorbers with various dynamic properties. We find no detectable NeIX, OVII, OVIII, NVII, or CVI absorption lines in the spectra, but the high counting statistics allows us to obtain firm upper limits on the corresponding ionic column densities (in particular N(OVII)<=10 N(OVI) on average at the 95% confidence level). Jointly analyzing these non-detected X-ray lines with the averaged OVI column density, we further limit the average temperature of the OVI-bearing gas to be log[T(K)]<=5.7 in collisional ionization equilibrium. We discuss the implications of these results for physical properties of the putative warm-hot intergalactic medium and its detection in future X-ray observations.
Although the existence of large-scale hot gaseous halos around massive disk galaxies have been theorized for a long time, there is yet very little observational evidence. We report the Chandra and XMM-Newton grating spectral detection of OVII and NeI X Kalpha absorption lines along the sight-line of 4U 1957+11. The line absorption is consistent with the interstellar medium in origin. Attributing these line absorptions to the hot gas associated with the Galactic disk, we search for the gaseous halo around the Milky Way by comparing this sight-line with more distant ones (toward X-ray binary LMC X-3 and the AGN Mrk 421). We find that all the line absorptions along the LMC X-3 and Mrk 421 sight-lines are attributable to the hot gas in a thick Galactic disk, as traced by the absorption lines in the spectra of 4U~1957+11 after a Galactic latitude dependent correction. We constrain the OVII column density through the halo to be N(OVII) < 5E15 cm^{-2} (95% confidence limit), and conclude that the hot gas contribution to the metal line absorptions, if existing, is negligible.
The soft X-ray background shows a general enhancement toward the inner region of the Galaxy. But whether this enhancement is a local feature (e.g., a superbubble within a distance of <= 200 pc) and/or a phenomenon related to energetic outflows from t he Galactic center/bulge remains unclear. Here we report a comparative X-ray emission and absorption study of diffuse hot gas along the sight lines toward 3C 273 and Mrk 421, on and off the enhancement, but at similar Galactic latitudes. The diffuse 3/4-keV emission intensity, as estimated from the ROSAT All Sky Survey, is about three times higher toward 3C 273 than toward Mrk 421. Based on archival chandra grating observations of these two AGNs, we detect X-ray absorption lines (e.g., OVII Kalpha, Kbeta, and OVIII Kalpha transitions at z~0) and find that the mean hot gas thermal and kinematic properties along the two sight lines are significantly different. By subtracting the foreground and background contribution, as determined along the Mrk 421 sight line, we isolate the net X-ray absorption and emission produced by the hot gas associated with the enhancement in the direction of 3C 273. From a joint analysis of these differential data sets, we obtain the temperature, dispersion velocity, and hydrogen column density as 2.0(1.6, 2.3)E6 K, 216(104,480) km/s, and 2.2(1.4, 4.1)E19 cm^{-2}, respectively (90% confidence intervals), assuming that the gas is approximately isothermal, solar in metal abundances, and equilibrium in collisional ionization. We also constrain the effective line-of-sight extent of the gas to be 3.4(1.0, 10.1) kpc, strongly suggesting that the enhancement most likely represents a Galactic central phenomenon.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا