ترغب بنشر مسار تعليمي؟ اضغط هنا

The complex nature of combining localization and classification in object detection has resulted in the flourished development of methods. Previous works tried to improve the performance in various object detection heads but failed to present a unifi ed view. In this paper, we present a novel dynamic head framework to unify object detection heads with attentions. By coherently combining multiple self-attention mechanisms between feature levels for scale-awareness, among spatial locations for spatial-awareness, and within output channels for task-awareness, the proposed approach significantly improves the representation ability of object detection heads without any computational overhead. Further experiments demonstrate that the effectiveness and efficiency of the proposed dynamic head on the COCO benchmark. With a standard ResNeXt-101-DCN backbone, we largely improve the performance over popular object detectors and achieve a new state-of-the-art at 54.0 AP. Furthermore, with latest transformer backbone and extra data, we can push current best COCO result to a new record at 60.6 AP. The code will be released at https://github.com/microsoft/DynamicHead.
Efficient search is a core issue in Neural Architecture Search (NAS). It is difficult for conventional NAS algorithms to directly search the architectures on large-scale tasks like ImageNet. In general, the cost of GPU hours for NAS grows with regard to training dataset size and candidate set size. One common way is searching on a smaller proxy dataset (e.g., CIFAR-10) and then transferring to the target task (e.g., ImageNet). These architectures optimized on proxy data are not guaranteed to be optimal on the target task. Another common way is learning with a smaller candidate set, which may require expert knowledge and indeed betrays the essence of NAS. In this paper, we present DA-NAS that can directly search the architecture for large-scale target tasks while allowing a large candidate set in a more efficient manner. Our method is based on an interesting observation that the learning speed for blocks in deep neural networks is related to the difficulty of recognizing distinct categories. We carefully design a progressive data adapted pruning strategy for efficient architecture search. It will quickly trim low performed blocks on a subset of target dataset (e.g., easy classes), and then gradually find the best blocks on the whole target dataset. At this time, the original candidate set becomes as compact as possible, providing a faster search in the target task. Experiments on ImageNet verify the effectiveness of our approach. It is 2x faster than previous methods while the accuracy is currently state-of-the-art, at 76.2% under small FLOPs constraint. It supports an argument search space (i.e., more candidate blocks) to efficiently search the best-performing architecture.
Sparse representations have been successfully applied to signal processing, computer vision and machine learning. Currently there is a trend to learn sparse models directly on structure data, such as region covariance. However, such methods when comb ined with region covariance often require complex computation. We present an approach to transform a structured sparse model learning problem to a traditional vectorized sparse modeling problem by constructing a Euclidean space representation for region covariance matrices. Our new representation has multiple advantages. Experiments on several vision tasks demonstrate competitive performance with the state-of-the-art methods.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا