ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we investigate the scalar Aharonov-Bohm (AB) effect in two of its forms, i.e., its electric form and its gravitational form. The standard form of the electric AB effect involves having particles (such as electrons) move in regions with zero electric field but different electric potentials. When a particle is recombined with itself, it will have a different phase, which can show up as a change in the way the single particle interferes with itself when it is recombined with itself. In the case where one has quasi-static fields and potentials, the particle will invariably encounter fringing fields, which makes the theoretical and experimental status of the electric AB effect much less clear than that of the magnetic (or vector) AB effect. Here we propose using time varying fields outside of a spherical shell, and potentials inside a spherical shell to experimentally test the scalar AB effect. In our proposal a quantum system will always be in a field-free region but subjected to a non-zero time-varying potentials. Furthermore, our system will not be spatially split and brought back together as in the magnetic AB experiment. Therefore there is no spatial interference and hence no shift in a spatial interference pattern to observe. Rather, there arises purely temporal interference phenomena. As in the magnetic AB experiments, these effects are non-classical. We present t
306 - Xiu-Hao Deng , Yong Hu , Lin Tian 2011
The quantum degeneracy point approach [D. Vion et al., Science 296, 886 (2002)] effectively protects superconducting qubits from low-frequency noise that couples with the qubits as transverse noise. However, low-frequency noise in superconducting qub its can originate from various mechanisms and can couple with the qubits either as transverse or as longitudinal noise. Here, we present a quantum circuit containing a universal quantum degeneracy point that protects an encoded qubit from arbitrary low-frequency noise. We further show that universal quantum logic gates can be performed on the encoded qubit with high gate fidelity. The proposed scheme is robust against small parameter spreads due to fabrication errors in the superconducting qubits.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا