ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding the microscopic origins of electronic phases in high-transition temperature (high-Tc) superconductors is important for elucidating the mechanism of superconductivity. In the paramagnetic tetragonal phase of BaFe2-xTxAs2 (where T is Co o r Ni) iron pnictides, an in-plane resistivity anisotropy has been observed. Here we use inelastic neutron scattering to show that low-energy spin excitations in these materials change from four-fold symmetric to two-fold symmetric at temperatures corresponding to the onset of the in-plane resistivity anisotropy. Because resistivity and spin excitation anisotropies both vanish near optimal superconductivity, we conclude that they are likely intimately connected.
A determination of the superconducting (SC) electron pairing symmetry forms the basis for establishing a microscopic mechansim for superconductivity. For iron pnictide superconductors, the $s^pm$-pairing symmetry theory predicts the presence of a sha rp neutron spin resonance at an energy below the sum of hole and electron SC gap energies ($Eleq 2Delta$) below $T_c$. On the other hand, the $s^{++}$-pairing symmetry expects a broad spin excitation enhancement at an energy above $2Delta$ below $T_c$. Although the resonance has been observed in iron pnictide superconductors at an energy below $2Delta$ consistent with the $s^pm$-pairing symmetry, the mode has also be interpreted as arising from the $s^{++}$-pairing symmetry with $Ege 2Delta$ due to its broad energy width and the large uncertainty in determining the SC gaps. Here we use inelastic neutron scattering to reveal a sharp resonance at E=7 meV in SC NaFe$_{0.935}$Co$_{0.045}$As ($T_c = 18$ K). On warming towards $T_c$, the mode energy hardly softens while its energy width increases rapidly. By comparing with calculated spin-excitations spectra within the $s^{pm}$ and $s^{++}$-pairing symmetries, we conclude that the ground-state resonance in NaFe$_{0.935}$Co$_{0.045}$As is only consistent with the $s^{pm}$-pairing, and is inconsistent with the $s^{++}$-pairing symmetry.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا