ترغب بنشر مسار تعليمي؟ اضغط هنا

Complex many-body interaction in perovskite manganites gives rise to a strong competition between ferromagnetic metallic and charge ordered phases with nanoscale electronic inhomogeneity and glassy behaviors. Investigating this glassy state requires high resolution imaging techniques with sufficient sensitivity and stability. Here, we present the results of a near-field microwave microscope imaging on the strain driven glassy state in a manganite film. The high contrast between the two electrically distinct phases allows direct visualization of the phase separation. The low temperature microscopic configurations differ upon cooling with different thermal histories. At sufficiently high temperatures, we observe switching between the two phases in either direction. The dynamic switching, however, stops below the glass transition temperature. Compared with the magnetization data, the phase separation was microscopically frozen, while spin relaxation was found in a short period of time.
The realization of quantum spin Hall (QSH) effect in HgTe quantum wells (QWs) is considered a milestone in the discovery of topological insulators. The QSH edge states are predicted to allow current to flow at the edges of an insulating bulk, as demo nstrated in various experiments. A key prediction of QSH theory that remains to be experimentally verified is the breakdown of the edge conduction under broken time reversal symmetry (TRS). Here we first establish a rigorous framework for understanding the magnetic field dependence of electrostatically gated QSH devices. We then report unexpected edge conduction under broken TRS, using a unique cryogenic microwave impedance microscopy (MIM), on a 7.5 nm HgTe QW device with an inverted band structure. At zero magnetic field and low carrier densities, clear edge conduction is observed in the local conductivity profile of this device but not in the 5.5 nm control device whose band structure is trivial. Surprisingly, the edge conduction in the 7.5 nm device persists up to 9 T with little effect from the magnetic field. This indicates physics beyond simple QSH models, possibly associated with material- specific properties, other symmetry protection and/or electron-electron interactions.
Real-space mapping of doping concentration in semiconductor devices is of great importance for the microelectronic industry. In this work, a scanning microwave impedance microscope (MIM) is employed to resolve the local conductivity distribution of a static random access memory (SRAM) sample. The MIM electronics can also be adjusted to the scanning capacitance microscopy (SCM) mode, allowing both measurements on the same region. Interestingly, while the conventional SCM images match the nominal device structure, the MIM results display certain unexpected features, which originate from a thin layer of the dopant ions penetrating through the protective layers during the heavy implantation steps.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا