ترغب بنشر مسار تعليمي؟ اضغط هنا

A fabrication method for electronic quantum Hall Fabry-Perot interferometers (FPI) is presented. Our method uses a combination of e-beam lithography and low-damage dry-etching to produce the FPIs and minimize the excitation of charged traps or deposi tion of impurities near the device. Optimization of the quantum point contacts (QPC) is achieved via systematically varying the etch depth and monitoring the device resistance between segmented etching sessions. The etching is stopped when a desired value of resistance is obtained. Finer control of interference trajectories is obtained by the gate metallized inside the etched area by e-beam evaporation. Our approach allows for a control of the delicate potential bending near the quantum well by tuning the confining potential of the quantum point contacts.
137 - Sanghun An , P. Jiang , H. Choi 2011
In this paper, we report on the study of Abelian and non-Abelian statistics through Fabry-Perot interferometry of fractional quantum Hall (FQH) systems. Our detection of phase slips in quantum interference experiments demonstrates a powerful, new way of detecting braiding of anyons. We confirm the Abelian anyonic braiding statistics in the $ u = 7/3$ FQH state through detection of the predicted statistical phase angle of $2pi/3$, consistent with a change of the anyonic particle number by one. The $ u = 5/2$ FQH state is theoretically believed to harbor non-Abelian anyons which are Majorana, meaning that each pair of quasiparticles contain a neutral fermion orbital which can be occupied or unoccupied and hence can act as a qubit. In this case our observed statistical phase slips agree with a theoretical model where the Majoranas are strongly coupled to each other, and strongly coupled to the edge modes of the interferometer. In particular, an observed phase slip of approximately $pi$ is interpreted as a sudden flip of a qubit, or entry of a neutral fermion into the interferometer. Our results provide compelling support for the existence of non-Abelian anyons.
113 - M. D. Godfrey , P. Jiang , W. Kang 2007
Experimental study of quantum Hall corrals reveals Aharonov-Bohm-Like (ABL) oscillations. Unlike the Aharonov-Bohm effect which has a period of one flux quantum, $Phi_{0}$, the ABL oscillations possess a flux period of $Phi_{0}/f$, where $f$ is the i nteger number of fully filled Landau levels in the constrictions. Detection of the ABL oscillations is limited to the low magnetic field side of the $ u_{c}$ = 1, 2, 4, 6... integer quantum Hall plateaus. These oscillations can be understood within the Coulomb blockade model of quantum Hall interferometers as forward tunneling and backscattering, respectively, through the center island of the corral from the bulk and the edge states. The evidence for quantum interference is weak and circumstantial.
We present activation gap measurements of the fractional quantum Hall effect (FQHE) in the second Landau level. Signatures for 14 (5) distinct incompressible FQHE states are seen in a high (low) mobility sample with the enigmatic 5/2 even denominator FQHE having a large activation gap of $sim$600 ($sim$300mK) in the high (low) mobility sample. Our measured large relative gaps for 5/2, 7/3, and 8/3 FQHE indicate emergence of exotic FQHE correlations in the second Ladau level, possibly quite different from the well-known lowest Landau level Laughlin correlations. Our measured 5/2 gap is found to be in reasonable agreement with the theoretical gap once finite width and disorder broadening corrections are taken into account.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا