ترغب بنشر مسار تعليمي؟ اضغط هنا

In this note we consider non-equilibrium steady states of one-dimensional models of heat conduction (wealth exchange) which are coupled to some reservoirs creating currents. In particular we will give sufficient and necessary conditions which will de pend only on the first two moments of the reservoir measures and the redistribution parameter under which the two-point functions are multilinear. This presents the first example of multilinear two-point functions in the absence of product stationary measures.
We consider infinite-dimensional diffusions where the interaction between the coordinates has a finite extent both in space and time. In particular, it is not supposed to be smooth or Markov. The initial state of the system is Gibbs, given by a stron g summable interaction. If the strongness of this initial interaction is lower than a suitable level, and if the dynamical interaction is bounded from above in a right way, we prove that the law of the diffusion at any time t is a Gibbs measure with absolutely summable interaction. The main tool is a cluster expansion in space uniformly in time of the Girsanov factor coming from the dynamics and exponential ergodicity of the free dynamics to an equilibrium product measure.
We analyze a class of energy and wealth redistribution models. We characterize their stationary measures and show that they have a discrete dual process. In particular we show that the wealth distribution model with non-zero propensity can never have invariant product measures. We also introduce diffusion processes associated to the wealth distribution models by instantaneous thermalization.
We study the abelian sandpile model on a random binary tree. Using a transfer matrix approach introduced by Dhar & Majumdar, we prove exponential decay of correlations, and in a small supercritical region (i.e., where the branching process survives w ith positive probability) exponential decay of avalanche sizes. This shows a phase transition phenomenon between exponential decay and power law decay of avalanche sizes. Our main technical tools are: (1) A recursion for the ratio between the numbers of weakly and strongly allowed configurations which is proved to have a well-defined stochastic solution; (2) quenched and annealed estimates of the eigenvalues of a product of $n$ random transfer matrices.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا