ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the discovery of KIC 9632895b, a 6.2 Earth-radius planet in a low-eccentricity, 240.5-day orbit about an eclipsing binary. The binary itself consists of a 0.93 and 0.194 solar mass pair of stars with an orbital period of 27.3 days. The pla ne of the planets orbit is rapidly precessing, and its inclination only becomes sufficiently aligned with the primary star in the latter portion of the Kepler data. Thus three transits are present in the latter half of the light curve, but none of the three conjunctions that occurred during the first half of the light curve produced transits. The precession period is ~103 years, and during that cycle, transits are visible only ~8% of the time. This has the important implication that for every system like KIC 9632895 that we detect, there are ~12 circumbinary systems that exist but are not currently exhibiting transits. The planets mass is too small to noticeably perturb the binary, consequently its mass is not measurable with these data; but our photodynamical model places a 1-sigma upper limit of 16 Earth masses. With a period 8.8 times that of the binary, the planet is well outside the dynamical instability zone. It does, however, lie within the habitable zone of the binary, and making it the third of ten Kepler circumbinary planets to do so.
We show that the Kepler spacecraft in two-reaction wheel mode of operation is very well suited for the study of eclipsing binary star systems. Continued observations of the Kepler field will provide the most enduring and long-term valuable science. I t will enable the discovery and characterization of eclipsing binaries with periods greater than 1 year - these are the most important, yet least understood binaries for habitable-zone planet background considerations. The continued mission will also enable the investigation of hierarchical multiple systems (discovered through eclipse timing variations), and provide drastically improved orbital parameters for circumbinary planetary systems.
Most Sun-like stars in the Galaxy reside in gravitationally-bound pairs of stars called binary stars. While long anticipated, the existence of a circumbinary planet orbiting such a pair of normal stars was not definitively established until the disco very of Kepler-16. Incontrovertible evidence was provided by the miniature eclipses (transits) of the stars by the planet. However, questions remain about the prevalence of circumbinary planets and their range of orbital and physical properties. Here we present two additional transiting circumbinary planets, Kepler-34 and Kepler-35. Each is a low-density gas giant planet on an orbit closely aligned with that of its parent stars. Kepler-34 orbits two Sun-like stars every 289 days, while Kepler-35 orbits a pair of smaller stars (89% and 81% of the Suns mass) every 131 days. Due to the orbital motion of the stars, the planets experience large multi-periodic variations in incident stellar radiation. The observed rate of circumbinary planets implies > ~1% of close binary stars have giant planets in nearly coplanar orbits, yielding a Galactic population of at least several million.
139 - W. F. Welsh , J. A. Orosz 2007
We explore the possibility that the transit signature of an Earth-size planet can be detected in spectroscopic velocity shifts via the Rossiter effect. Under optimistic but not unrealistic conditions, it should be possible to detect a large terrestri al-size planet. While not suitable for discovering planets, this method can be used to confirm suspected planets.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا