ترغب بنشر مسار تعليمي؟ اضغط هنا

88 - G. J. Ferland 2012
The optical [N I] doublet near 5200 {AA} is anomalously strong in a variety of emission-line objects. We compute a detailed photoionization model and use it to show that pumping by far-ultraviolet (FUV) stellar radiation previously posited as a gener al explanation applies to the Orion Nebula (M42) and its companion M43; but, it is unlikely to explain planetary nebulae and supernova remnants. Our models establish that the observed nearly constant equivalent width of [N I] with respect to the dust-scattered stellar continuum depends primarily on three factors: the FUV to visual-band flux ratio of the stellar population; the optical properties of the dust; and the line broadening where the pumping occurs. In contrast, the intensity ratio [N I]/H{beta} depends primarily on the FUV to extreme-ultraviolet ratio, which varies strongly with the spectral type of the exciting star. This is consistent with the observed difference of a factor of five between M42 and M43, which are excited by an O7 and B0.5 star respectively. We derive a non-thermal broadening of order 5 km/s for the [N I] pumping zone and show that the broadening mechanism must be different from the large-scale turbulent motions that have been suggested to explain the line-widths in this H II region. A mechanism is required that operates at scales of a few astronomical units, which may be driven by thermal instabilities of neutral gas in the range 1000 to 3000 K. In an appendix, we describe how collisional and radiative processes are treated in the detailed model N I atom now included in the Cloudy plasma code.
We present the first three-dimensional radiation-magnetohydrodynamic simulations of the photoionisation of a dense, magnetised molecular globule by an external source of ultraviolet radiation. We find that, for the case of a strong ionising field, si gnificant deviations from the non-magnetic evolution are seen when the initial magnetic field threading the globule has an associated magnetic pressure that is greater than one hundred times the gas pressure. In such a strong-field case, the photoevaporating globule will adopt a flattened or curled up shape, depending on the initial field orientation, and magnetic confinement of the ionised photoevaporation flow can lead to recombination and subsequent fragmentation during advanced stages of the globule evolution. We find suggestive evidence that such magnetic effects may be important in the formation of bright, bar-like emission features in H II regions. We include simple but realistic fits to heating and cooling rates in the neutral and molecular gas in the vicinity of a high-mass star cluster and show that the frequently used isothermal approximation can lead to an overestimate of the importance of gravitational instability in the radiatively imploded globule. For globules within 2 parsecs of a high-mass star cluster, we find that heating by stellar x rays prevents the molecular gas from cooling below 50 K.
The three dimensional structure of the brightest part of the Orion Nebula is assessed in the light of published and new data. We find that the widely accepted model of a concave blister of ionized material needs to be altered in the southwest directi on from the Trapezium, where we find that the Orion-S feature is a separate cloud of very optically thick molecules within the body of ionized gas, which is probably the location of the multiple embedded sources that produce the outflows that define the Orion-S star formation region. Evidence for this cloud comes from the presence of H2CO lines in absorption in the radio continuum and discrepancies in the extinction derived from radio-optical and optical only emission. We present an equilibrium Cloudy model of the Orion-S cloud, which successfully reproduces many observed properties of this feature. We also report the discovery of an open-sided shell of [O III] surrounding the Trapezium stars, revealed through emission line ratio images and the onset of radiation shadows beyond some proplyds. We show that the observed properties of the shell are consistent with it being a stationary structure, produced by shock interactions between the ambient nebular gas and the high-velocity wind from theta^1 Ori C. We examine the implications of the recently published evidence for a large blueshifted velocity of theta^1 Ori C with respect to the Orion Molecular Cloud, which could mean that this star has only recently begun to photoionize the Orion Nebula. We show that current observations of the Nebula do not rule out such a possibility, so long as the ionization front has propagated into a pre-existing low-density region. In addition, a young age for the Nebula would help explain the presence of nearby proplyds with a short mass-loss timescale to photoablation.
We have used widely spaced in time Hubble Space Telescope images to determine tangential velocities of features associated with outflows from young stars. These observations were supplemented by groundbased telescope spectroscopy and from the resulta nt radial velocities, space velocities were determined for many outflows. Numerous new moving features were found and grouped into known and newly assigned Herbig Haro objects. It was found that stellar outflow is highly discontinuous, as frequently is the case, with long-term gaps of a few hundred years and that these outflow periods are marked by staccato bursts over periods of about ten years. Although this has been observed in other regions, the Orion Nebula Cluster presents the richest display of this property. Most of the large scale Herbig Haro objects in the brightest part of the Orion Nebula appear to originate from a small region northeast of the strong Orion-S radio and infrared sources. With the possible exception of HH 203, we are not able to identify specific stellar sources, but do identify candidate sources for several other bright Herbig Haro objects. We find that there are optical features in the BN-KL region that can be related to the known large scale outflow that originates there. We find additional evidence for this outflow originating 500 to 1000 years ago.
We present an atlas of three-dimensional (position-position-velocity) spectra of the Orion Nebula in optical emission lines from a variety of different ionization stages: [O I] 6300, [S II] 6716,6731, [N II] 6584, [S III] 6312, H alpha 6563, and [O I II] 5007. These transitions provide point to point information about the physical structure and kinematics of the nebula at an effective resolution of 3 x 2 x 10 km/s, clearly showing the large scale behavior of the ionized gas and the presence of localized phenomena such as Herbig-Haro outflows. As an example application of the atlas, we present a statistical analysis of the widths of the H alpha, [O III], and [N II] lines that permits a determination of the mean electron temperature in the nebula of (9200 +/- 400) K. We also find, in contradiction to previous claims, that the non-thermal line broadening is not significantly different between recombination lines and collisional lines.
The hydrogen ionization and dissociation front around an ultraviolet radiation source should merge when the ratio of ionizing photon flux to gas density is sufficiently low and the spectrum is sufficiently hard. This regime is particularly relevant t o the molecular knots that are commonly found in evolved planetary nebulae, such as the Helix Nebula, where traditional models of photodissociation regions have proved unable to explain the high observed luminosity in H_2 lines. In this paper we present results for the structure and steady-state dynamics of such advection-dominated merged fronts, calculated using the Cloudy plasma/molecular physics code. We find that the principal destruction processes for H_2 are photoionization by extreme ultraviolet radiation and charge exchange reactions with protons, both of which form H_2^+, which rapidly combines with free electrons to undergo dissociative recombination. Advection moves the dissociation front to lower column densities than in the static case, which vastly increases the heating in the partially molecular gas due to photoionization of He^0, H_2, and H^0. This causes a significant fraction of the incident bolometric flux to be re-radiated as thermally excited infrared H_2 lines, with the lower excitation pure rotational lines arising in 1000 K gas and higher excitation H_2 lines arising in 2000 K gas, as is required to explain the H_2 spectrum of the Helix cometary knots.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا