ترغب بنشر مسار تعليمي؟ اضغط هنا

In order to find the most extreme dust-hidden high-redshift galaxies, we select 196 extremely red objects in the Ks and IRAC bands (KIEROs, [Ks-4.5um](AB)>1.6) in the 0.06 deg^2 GOODS-N region. This selection avoids the Balmer breaks of galactic spec tra at z<4 and picks up red galaxies with strong dust extinction. The photometric redshifts of KIEROs are between 1.5 and 5, with ~70% at z~2-4. KIEROs are very massive, with M*~10^10-10^12 Msun. They are optically faint and usually cannot be picked out by the Lyman break selection. On the other hand, the KIERO selection includes approximately half of the known millimeter and submillimeter galaxies in the GOODS-N. Stacking analyses in the radio, millimeter, and submillimeter all show that KIEROs are much more luminous than average 4.5um selected galaxies. Interestingly, the stacked fluxes for ACS-undetected KIEROs in these wavebands are 2.5-5 times larger than those for ACS-detected KIEROs. With the stacked radio fluxes and the local radio-FIR correlation, we derive mean infrared luminosities of 2-7x10^12 Lsun and mean star formation rates of 300-1200 Msun/yr for KIEROs with redshifts. We do not find evidence of a significant subpopulation of passive KIEROs. The large stellar masses and star formation rates imply that KIEROs are $z>2$ massive galaxies in rapid formation. Our results show that a large sample of dusty ultraluminous sources can be selected in this way and that a large fraction of high-redshift star formation is hidden by dust.
169 - Wei-Hao Wang 2010
We present an ultradeep Ks-band image that covers 0.5*0.5 deg^2 centered on the Great Observatories Origins Deep Survey-North (GOODS-N). The image reaches a 5 sigma depth of Ks(AB) = 24.45 in the GOODS-N region, which is as deep as the GOODS-N Spitze r Infrared Array Camera (IRAC) 3.6 mu m image. We present a new method of constructing IRAC catalogs that uses the higher spatial resolution Ks image and catalog as priors and iteratively subtracts fluxes from the IRAC images to estimate the IRAC fluxes. Our iterative method is different from the chi^2 approach adopted by other groups. We verified our results using data taken in two different epochs of observations, as well as by comparing our colors with the colors of stars and with the colors derived from model spectral energy distributions (SEDs) of galaxies at various redshifts. We make available to the community our WIRCam Ks-band image and catalog (94951 objects in 0.25 deg^2), the Interactive Data Language (IDL) pipeline used for reducing the WIRCam images, and our IRAC 3.6 to 8.0 mu m catalog (16950 objects in 0.06 deg^2 at 3.6 mu m). With this improved Ks and IRAC catalog and a large spectroscopic sample from our previous work, we study the color-magnitude and color-color diagrams of galaxies. We compare the effectiveness of using Ks and IRAC colors to select active galactic nuclei (AGNs) and galaxies at various redshifts. We also study a color selection of z = 0.65--1.2 galaxies using the Ks, 3.6 mu m, and 4.5 mu m bands.
GOODS 850-5 is a hyperluminous radio-faint submillimeter source in the GOODS-N. Although it is generally agreed that GOODS 850-5 is at a high redshift z>~4, its exact redshift is unknown. While its stellar SED suggests z~6, its radio/FIR SED suggests a lower redshift of z~4. To better constrain its stellar SED and redshift, we carried out nano-Jansky sensitivity ultradeep NIR observations between 1.2 and 2.1 um with the HST and the 8 m Subaru Telescope. Even with such great depths we did not detect GOODS 850-5, and the results show that it is an extremely curious source. Between the Ks and 3.6 um bands its spectral slope is >3x that of an ERO, and the flux ratio between the two bands is >8x that of Lyman breaks. It is quite challenging to explain this unusually red color without a Lyman break (which would imply z>17). It requires a large amount (M* ~ 10^11.5 Msun) of reddened old stars at z~6, coexisting with an even more extinguished violent ~2400-4400 Msun/yr starburst, which does not have any associated detectable rest-frame UV radiation. We discuss the discrepancy between the NIR and radio/FIR photometric redshifts. We conclude that GOODS 850-5 is at least at z>4 and is more likely at z>~6. We describe the unusual properties of GOODS 850-5, including its SED and formation history, and we discuss the implications of such massive z>6 galaxies.
We report an SMA interferometric identification of a bright submillimeter source, GOODS 850-5. This source is one of the brightest 850 um sources in the GOODS-N but is extremely faint at all other wavelengths. It is not detected in the GOODS HST ACS images and only shows a weak 2 sigma signal at 1.4 GHz. It is detected in the Spitzer IRAC bands and the MIPS 24 um band, however, with very low fluxes. We present evidence in the radio, submillimeter, mid-IR, near-IR, and optical that suggest GOODS 850-5 may be a z>4 galaxy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا